• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Lei, He Dongjie, Li Lian, Feng Xiaobing. Sparse Framework Based Static Taint Analysis Optimization[J]. Journal of Computer Research and Development, 2019, 56(3): 480-495. DOI: 10.7544/issn1000-1239.2019.20180071
Citation: Wang Lei, He Dongjie, Li Lian, Feng Xiaobing. Sparse Framework Based Static Taint Analysis Optimization[J]. Journal of Computer Research and Development, 2019, 56(3): 480-495. DOI: 10.7544/issn1000-1239.2019.20180071

Sparse Framework Based Static Taint Analysis Optimization

More Information
  • Published Date: February 28, 2019
  • At present, privacy preserving is an important research challenge of information system security. Privacy leak detection for applications is an effective solution for privacy preserving. Taint analysis can effectively protect the confidentiality and integrity of information in the system, and report the privacy leak risk of applications in advance. However, the existing static taint analysis tool still has the problem of high analysis overhead especially in high sensitive mode. This work first deeply analyzes that there exists a large number of unrelated propagation which leads to unnecessary expenses in current IFDS-based taint analysis, and statistical results show that the proportion of it is up to 85.5%. Aiming at this problem, this paper attempts to use an effective optimization method, sparse optimization in recent years, to eliminate the unrelated propagation in static taint analysis, and achieve the optimization of time and space cost. We have innovatively extended the classic data flow analysis framework (IFDS) into a sparse form, and provide a corresponding taint analysis algorithm. We implemented a tool called FlowDroidSP. Experimental results show that the tool has 4.8 times of time acceleration and 61.5% memory reduction compared with the original FlowDroid under the non-pruning mode. Under pruning mode, it has an average time of 18.1 times speedup and 76.1% memory reduction.
  • Related Articles

    [1]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [2]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [3]Liu Zhe, Song Yuqing, Chen Jianmei, Xie Conghua, Song Wenshan. Image Segmentation Based on Non-Parametric Mixture Models of Chebyshev Orthogonal Polynomials of the Second Kind[J]. Journal of Computer Research and Development, 2011, 48(11): 2008-2014.
    [4]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [5]Chen Yunjie, Zhang Jianwei, Wang Shunfeng, Zhan Tianming. Brain MR Image Segmentation Based on Anisotropic Wells Model[J]. Journal of Computer Research and Development, 2010, 47(11): 1878-1885.
    [6]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [7]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
    [8]Chen Yunjie, Zhang Jianwei, Wei Zhihui, Xia Desheng, Heng Pheng Ann. Brain MRI Segmentation Using the Active Contours Based on Gaussian Mixture Models[J]. Journal of Computer Research and Development, 2007, 44(9): 1595-1603.
    [9]Shi Chengxian, Wang Hongyuan, Heng Pheng Ann, Xia Deshen. A Parametric Active Contour Model for Medical Image Segmentation Using Priori Shape Force Field[J]. Journal of Computer Research and Development, 2006, 43(12): 2131-2137.
    [10]Zhang Jianwei, Xia Deshen. An Image Segmentation Model Based on Dual Level Sets[J]. Journal of Computer Research and Development, 2006, 43(1): 120-125.

Catalog

    Article views (1505) PDF downloads (447) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return