• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111
Citation: Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111

Modeling Computational Feature of Multi-Layer Neural Network

Funds: This work was supported by the National Natural Science Foundation of China(61772350), the Common Information System Equipment Pre-research Funds (Open Project) (JZX2017-0988/Y300), Beijing Nova Program (Z181100006218093), the Open Project of State Key Laboratory of Computer Architecture (CARCH201607), the Research Fund from Beijing Innovation Center for Future Chips (KYJJ2018008), the Construction Plan of Beijing High-level Teacher Team (CIT&TCD201704082), and the Capacity Building for Sci-Tech Innovation Fundamental Scientific Research Funds (19530050173, 025185305000).
More Information
  • Published Date: May 31, 2019
  • Deep neural networks (DNNs) have become increasingly popular as machine learning technique in applications, due to their ability to achieve high accuracy for tasks such as speech/image recognition. However, with the rapid growth on the scale of data and precision of recognition, the topology of neural network is becoming more and more complicated. Thus, how to design the energy-efficiency and programmability, neural or deep learning accelerator plays an essential role in next generation computer. In this paper, we propose a layer granularity analysis method, which could extract computation operations and memory requirement features through general expression and basic operation attributions. We also propose a max value replacement schedule strategy, which schedules the computation hardware resource based on the network feature we extract. Evaluation results show our method can increase computational efficiency and lead to a higher resource utilization.
  • Related Articles

    [1]Liu Zhaoqing, Gu Shilin, Hou Chenping. Online Classification Algorithm with Feature Inheritably Increasing and Decreasing[J]. Journal of Computer Research and Development, 2022, 59(8): 1668-1682. DOI: 10.7544/issn1000-1239.20220073
    [2]Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
    [3]Wang Yujun, Gao Qiankun, Zhang Xian, and Tao Qing. A Coordinate Descent Algorithm for Solving Capped-L1 Regularization Problems[J]. Journal of Computer Research and Development, 2014, 51(6): 1304-1312.
    [4]Liao Shizhong, Wang Mei, Zhao Zhihui. Regularization Path Algorithm of SVM via Positive Definite Matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.
    [5]Wang Quan and Chen Songcan. Ensemble Learning of ELM Regressors Based on l1-regularization[J]. Journal of Computer Research and Development, 2012, 49(12): 2631-2637.
    [6]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [7]Huang Weixian and Wang Guojin. The L\-2 Distances for Rational Surfaces Based on Matrix Representation of Degree Elevation[J]. Journal of Computer Research and Development, 2010, 47(8): 1338-1345.
    [8]Yang Yuexiang, Luo Yong, Ye Zhaohui, Cheng Lizhi. A Complete Frequency Lossless Watermarking Method via Bandelet and Adaptive Matrix Norm[J]. Journal of Computer Research and Development, 2007, 44(12): 1996-2003.
    [9]Zhang Shichao, Xu Yinjun, Gu Ning, Shi Baile. A Norm-Driven Grid Workflow State Machine Model[J]. Journal of Computer Research and Development, 2006, 43(2): 307-313.
    [10]Tian Yongjun and Chen Songcan. Matrix-Pattern-Oriented Ho-Kashyap Classifier with Regularization Learning[J]. Journal of Computer Research and Development, 2005, 42(9): 1628-1632.

Catalog

    Article views (1479) PDF downloads (520) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return