• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540
Citation: Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540

Survey on Techniques, Applications and Security of Machine Learning Interpretability

More Information
  • Published Date: September 30, 2019
  • While machine learning has achieved great success in various domains, the lack of interpretability has limited its widespread applications in real-world tasks, especially security-critical tasks. To overcome this crucial weakness, intensive research on improving the interpretability of machine learning models has emerged, and a plethora of interpretation methods have been proposed to help end users understand its inner working mechanism. However, the research on model interpretation is still in its infancy, and there are a large amount of scientific issues to be resolved. Furthermore, different researchers have different perspectives on solving the interpretation problem and give different definitions for interpretability, and the proposed interpretation methods also have different emphasis. Till now, the research community still lacks a comprehensive understanding of interpretability as well as a scientific guide for the research on model interpretation. In this survey, we review the explanatory problems in machine learning, and make a systematic summary and scientific classification of the existing research works. At the same time, we discuss the potential applications of interpretation related technologies, analyze the relationship between interpretability and the security of interpretable machine learning, and discuss the current research challenges and potential future research directions, aiming at providing necessary help for future researchers to facilitate the research and application of model interpretability.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [3]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [4]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [5]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [6]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [7]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [8]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [9]Fang Weiwei, Ren Jiang, Xia Hongke. Heterogeneous Distributed Linear Regression Privacy-Preserving Modeling[J]. Journal of Computer Research and Development, 2011, 48(9): 1685-1692.
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (4538) PDF downloads (3202) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return