• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540
Citation: Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540

Survey on Techniques, Applications and Security of Machine Learning Interpretability

More Information
  • Published Date: September 30, 2019
  • While machine learning has achieved great success in various domains, the lack of interpretability has limited its widespread applications in real-world tasks, especially security-critical tasks. To overcome this crucial weakness, intensive research on improving the interpretability of machine learning models has emerged, and a plethora of interpretation methods have been proposed to help end users understand its inner working mechanism. However, the research on model interpretation is still in its infancy, and there are a large amount of scientific issues to be resolved. Furthermore, different researchers have different perspectives on solving the interpretation problem and give different definitions for interpretability, and the proposed interpretation methods also have different emphasis. Till now, the research community still lacks a comprehensive understanding of interpretability as well as a scientific guide for the research on model interpretation. In this survey, we review the explanatory problems in machine learning, and make a systematic summary and scientific classification of the existing research works. At the same time, we discuss the potential applications of interpretation related technologies, analyze the relationship between interpretability and the security of interpretable machine learning, and discuss the current research challenges and potential future research directions, aiming at providing necessary help for future researchers to facilitate the research and application of model interpretability.
  • Related Articles

    [1]Li Ruihan, Hou Yefan, Li Yuhui, Liu Zhaoyuan, Zhang Haihong, Liang Jingang. Massively Parallel Simulation and Optimization of Advanced Nuclear Reactors with Dispersed Particle Fuel[J]. Journal of Computer Research and Development, 2024, 61(4): 973-982. DOI: 10.7544/issn1000-1239.202221032
    [2]Cai Di, Hong Xuehai, Xiao Junmin, Tan Guangming. Parallel Optimization for Large-Scale Ocean Data Assimilation[J]. Journal of Computer Research and Development, 2023, 60(5): 1177-1190. DOI: 10.7544/issn1000-1239.202111185
    [3]Zhao Yuhai, Yin Ying, Li Yuan, Wang Siyao, Wang Guoren. A Parallel Algorithm for Mining Interactive Features from Large Scale Sequences[J]. Journal of Computer Research and Development, 2019, 56(5): 992-1006. DOI: 10.7544/issn1000-1239.2019.20180276
    [4]Liu Zhixiang, Fang Yong, Song Anping, Xu Lei, Wang Xiaowei, Zhou Liping, Zhang Wu. Large-Scale Scalable Parallel Computing Based on LBM with Multiple-Relaxation-Time Model[J]. Journal of Computer Research and Development, 2016, 53(5): 1156-1165. DOI: 10.7544/issn1000-1239.2016.20148441
    [5]Ding Xiangwu, Guo Tao, Wang Mei, Jin Ran. A Clustering Algorithm for Large-Scale Categorical Data and Its Parallel Implementation[J]. Journal of Computer Research and Development, 2016, 53(5): 1063-1071. DOI: 10.7544/issn1000-1239.2016.20148422
    [6]Yu Jing, Liu Yanbing, Zhang Yu, Liu Mengya, Tan Jianlong, Guo Li. Survey on Large-Scale Graph Pattern Matching[J]. Journal of Computer Research and Development, 2015, 52(2): 391-409. DOI: 10.7544/issn1000-1239.2015.20140188
    [7]Jiao Sibei, Ying Lingyun, Yang Yi, Cheng Yao, Su Purui, and Feng Dengguo. An Anti-Obfuscation Method for Detecting Similarity Among Android Applications in Large Scale[J]. Journal of Computer Research and Development, 2014, 51(7): 1446-1457.
    [8]Rong Xiaohui, Chen Feng, Deng Pan, and Ma Shilong. A Large-scale Device Collaboration Mechanism[J]. Journal of Computer Research and Development, 2011, 48(9): 1589-1596.
    [9]Zhou Enqiang, Lu Yutong, and Shen Zhiyu. Implementation of Checkpoint System Towards Large Scale Parallel Computing[J]. Journal of Computer Research and Development, 2005, 42(6): 987-992.
    [10]Pu Jiantao and Zha Hongbin. Research on Visibility for Large-Scale and Complex Scenes[J]. Journal of Computer Research and Development, 2005, 42(2): 236-246.
  • Cited by

    Periodical cited type(25)

    1. 张世文,陈双,梁伟,李仁发. 联邦学习中的攻击手段与防御机制研究综述. 计算机工程与应用. 2024(05): 1-16 .
    2. 刘炜,刘宇昭,唐琮轲,王媛媛,佘维,田钊. 基于区块链的联邦蒸馏数据共享模型研究. 计算机科学. 2024(03): 39-47 .
    3. 汤凌韬,陈左宁,张鲁飞,吴东. 联邦学习中的隐私问题研究进展. 软件学报. 2023(01): 197-229 .
    4. 金源,李成智. 智能财务背景下的财务信息安全研究. 财会通讯. 2023(07): 136-144 .
    5. 先兴平,吴涛,乔少杰,吴渝,刘宴兵. 图学习隐私与安全问题研究综述. 计算机学报. 2023(06): 1184-1212 .
    6. 李功源,刘博涵,杨雨豪,邵栋. 可信人工智能系统的质量属性与实现:三级研究. 软件学报. 2023(09): 3941-3965 .
    7. 王守欣,彭长根,刘海,谭伟杰,张弘. 基于联邦学习的PATE教师模型聚合优化方法. 计算机与数字工程. 2023(11): 2608-2614 .
    8. 崔争艳,刘晨晨,孙滨. 基于机器学习的MOOC学习者弃学预测与预警系统实现. 信息与电脑(理论版). 2022(01): 65-67 .
    9. 王坤庆,刘婧,李晨,赵语杭,吕浩然,李鹏,刘炳莹. 联邦学习安全威胁综述. 信息安全研究. 2022(03): 223-234 .
    10. 陈玉明,董建威. 基于粒计算的非线性感知机. 数据采集与处理. 2022(03): 566-575 .
    11. 田枫,冯建臣,刘芳. 改进YOLOv4的油田作业现场烟火检测. 计算机系统应用. 2022(06): 300-306 .
    12. 宁晗阳,马苗,杨波,刘士昌. 密码学智能化研究进展与分析. 计算机科学. 2022(09): 288-296 .
    13. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    14. 黄精武. 基于差分隐私的联邦学习数据隐私安全技术. 通信技术. 2022(12): 1618-1625 .
    15. 黄志强. 基于随机化防御的云应用安全体系技术研究. 电子设计工程. 2021(02): 150-154 .
    16. 赵俊杰,王金伟. 基于SmsGAN的对抗样本修复. 郑州大学学报(工学版). 2021(01): 50-55 .
    17. 张颖君,陈恺,周赓,吕培卓,刘勇,黄亮. 神经网络水印技术研究进展. 计算机研究与发展. 2021(05): 964-976 . 本站查看
    18. 拓世英,孙浩,林子涵,陈进. 多模态图像智能目标识别对抗攻击. 国防科技. 2021(02): 8-13 .
    19. 张宇,李海良. 基于RSA的图像可识别对抗攻击方法. 网络与信息安全学报. 2021(05): 40-48 .
    20. 黄静琪,贾西平,陈道鑫,柏柯嘉,廖秀秀. 基于双对抗机制的图像攻击算法. 计算机工程. 2021(11): 150-157 .
    21. 孙爽,李晓会,刘妍,张兴. 不同场景的联邦学习安全与隐私保护研究综述. 计算机应用研究. 2021(12): 3527-3534 .
    22. 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版). 2020(04): 9-17 .
    23. 李德权,许月,薛生. 基于动态约束自适应方法抵御高维鞍点攻击. 计算机研究与发展. 2020(09): 2001-2008 . 本站查看
    24. 魏立斐,陈聪聪,张蕾,李梦思,陈玉娇,王勤. 机器学习的安全问题及隐私保护. 计算机研究与发展. 2020(10): 2066-2085 . 本站查看
    25. 宋雪亚,王传安. 文本信息分词处理下的智能家电离线语音识别. 自动化与仪器仪表. 2020(12): 161-164 .

    Other cited types(50)

Catalog

    Article views (4514) PDF downloads (3198) Cited by(75)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return