• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Mu, Yang Chen, Hua Lei, Liu Shuai, Ma Shidian. Vehicle Pseudonym Management Scheme in Internet of Vehicles for Mobile Edge Computing[J]. Journal of Computer Research and Development, 2022, 59(4): 781-795. DOI: 10.7544/issn1000-1239.20200620
Citation: Han Mu, Yang Chen, Hua Lei, Liu Shuai, Ma Shidian. Vehicle Pseudonym Management Scheme in Internet of Vehicles for Mobile Edge Computing[J]. Journal of Computer Research and Development, 2022, 59(4): 781-795. DOI: 10.7544/issn1000-1239.20200620

Vehicle Pseudonym Management Scheme in Internet of Vehicles for Mobile Edge Computing

Funds: This work was supported by the National Natural Science Foundation of China(61902156), the Innovation Plan for Postgraduate Research of Jiangsu Province (KYLX_1057), and the Natural Science Foundation of Jiangsu Province (BK20180860).
More Information
  • Published Date: March 31, 2022
  • Mobile edge computing (MEC) deploys computing and storage resources to the edge of the network, which brings real-time and high-reliability services to the Internet of vehicles (IoV). However, MEC faces various security threats. Attackers may control edge data centers and leak the pseudonym information of the vehicle, thereby threatening the vehicle’s identity privacy. For this problem, a vehicle pseudonym management scheme in MEC-IoV is proposed, which can realize efficient update of pseudonym information, secure storage of pseudonym information in the edge cloud, and traceability of pseudonyms. This scheme uses the edge cloud with high real-time performance to replace the central cloud to authenticate the vehicle identity, which improves the efficiency of identity authentication and realizes efficient pseudonym update. The pseudonym information is encrypted by the homomorphic encryption algorithm, which guarantees the security of the pseudonym information and doesn’t affect pseudonym management in the edge cloud. Each pseudonym table of the vehicle is associated with a search term calculated based on the pseudonym in the table, and the highest authority of the system can calculate the search term based on the ciphertext of the pseudonym table to expose the real identity of the malicious vehicle, which realize traceability of pseudonyms. After that, through the provable security theory, it is proved that the scheme is indistinguishable under the chosen plaintext attack, and the security analysis of the anonymity of the vehicle identity, the integrity and non-repudiation of the message in the scheme is carried out, which achieve the security requirements of preserving vehicle’s identity privacy in IoV. In the end, the efficiency analysis and simulation of the scheme in terms of identity authentication, pseudonym request, and homomorphic encryption performance are carried out. Experimental results show this scheme can achieve the requirements of low-latency communication in IoV and is superior to existing schemes in authentication efficiency.
  • Related Articles

    [1]Bai Lifang, Zhu Yuefei, Li Yongjun, Wang Shuai, Yang Xiaoqi. Research Progress of Fully Homomorphic Encryption[J]. Journal of Computer Research and Development, 2024, 61(12): 3069-3087. DOI: 10.7544/issn1000-1239.202221052
    [2]Zhao Xiufeng, Fu Yu, Song Weitao. Circular Secure Homomorphic Encryption Scheme[J]. Journal of Computer Research and Development, 2020, 57(10): 2117-2124. DOI: 10.7544/issn1000-1239.2020.20200422
    [3]Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426
    [4]Yao Hailong, Wang Caifen, Xu Qinbai, Li Wenting. A Distributed Biometric Authentication Protocol Based on Homomorphic Encryption[J]. Journal of Computer Research and Development, 2019, 56(11): 2375-2383. DOI: 10.7544/issn1000-1239.2019.20190293
    [5]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [6]Xu Wenyu, Wu Lei, Yan Yunxue. Privacy-Preserving Scheme of Electronic Health Records Based on Blockchain and Homomorphic Encryption[J]. Journal of Computer Research and Development, 2018, 55(10): 2233-2243. DOI: 10.7544/issn1000-1239.2018.20180438
    [7]Yang Xiaoyuan, Zhou Tanping, Zhang Wei, Wu Liqiang. Application of a Circular Secure Variant of LWE in the Homomorphic Encryption[J]. Journal of Computer Research and Development, 2015, 52(6): 1389-1393. DOI: 10.7544/issn1000-1239.2015.20131952
    [8]Li Shundong, Dou Jiawei, Wang Daoshun. Survey on Homomorphic Encryption and Its Applications to Cloud Security[J]. Journal of Computer Research and Development, 2015, 52(6): 1378-1388. DOI: 10.7544/issn1000-1239.2015.20131494
    [9]Liu Mingjie, Wang An. Fully Homomorphic Encryption and Its Applications[J]. Journal of Computer Research and Development, 2014, 51(12): 2593-2603. DOI: 10.7544/issn1000-1239.2014.20131168
    [10]Qiang Weizhong, Zou Deqing, and Jin Hai. Research on Privacy Preservation Mechanism for Credentials and Policies in Grid Computing Environment[J]. Journal of Computer Research and Development, 2007, 44(1): 11-19.
  • Cited by

    Periodical cited type(7)

    1. 朱思峰,王钰,陈昊,朱海,柴争义,杨诚瑞. 车联网边缘计算场景下基于改进型NSGA-Ⅱ算法的边缘服务器部署决策. 物联网学报. 2024(01): 84-97 .
    2. 门红蕾,曹利,郑国莉,李原帅,马海英. 车联网基于稀疏用户环境的LBS隐私保护方案. 计算机应用研究. 2024(09): 2831-2838 .
    3. 汪洋,叶挺,李廷文,吴兵. 自主船舶航行系统信息空间安全:挑战与探索. 华中科技大学学报(自然科学版). 2023(02): 64-76 .
    4. 郑莹莹,周俊龙,申钰凡,丛佩金,吴泽彬. 时间和能量敏感的端——边—云车路协同系统资源调度优化方法. 计算机研究与发展. 2023(05): 1037-1052 . 本站查看
    5. 况博裕,李雨泽,顾芳铭,苏铓,付安民. 车联网安全研究综述:威胁、对策与未来展望. 计算机研究与发展. 2023(10): 2304-2321 . 本站查看
    6. 王晨,郑文英,王惟正,谭皓文. 边缘计算数据安全保护研究综述. 网络空间安全科学学报. 2023(02): 35-45 .
    7. 邓雨康,张磊,李晶. 车联网隐私保护研究综述. 计算机应用研究. 2022(10): 2891-2906 .

    Other cited types(9)

Catalog

    Article views (387) PDF downloads (319) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return