• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Guo Jiang, Wang Miao, Zhang Yujun. Content Type Based Jumping Probability Caching Mechanism in NDN[J]. Journal of Computer Research and Development, 2021, 58(5): 1118-1128. DOI: 10.7544/issn1000-1239.2021.20190871
Citation: Guo Jiang, Wang Miao, Zhang Yujun. Content Type Based Jumping Probability Caching Mechanism in NDN[J]. Journal of Computer Research and Development, 2021, 58(5): 1118-1128. DOI: 10.7544/issn1000-1239.2021.20190871

Content Type Based Jumping Probability Caching Mechanism in NDN

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1800403, 2016YFE0121500), the Research Program of Network Computing Innovation Research Institute (E061010003), the National Natural Science Foundation of China (61902382, 61972381, 61672500), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDC02030500).
More Information
  • Published Date: April 30, 2021
  • In-network caching, which makes every networking node have a universal cache function, has become a key technology in NDN (named data networking) to achieve efficient access to information and to effectively reduce Internet backbone traffic. When users need to obtain information, any networking node (e.g., router) caching their content can directly provide the corresponding content after receiving their request so as to improve the response efficiency of user requests. However, NDN adopts a ubiquitous caching policy, which caches the content repeatedly and indiscriminately on the transmission path between the content provider and user, resulting in data redundancy and indiscriminate content caching. To this end, we propose a based on content type jumping probability caching mechanism in NDN. According to content features (e.g., delay requirement and bandwidth occupation), we first divide into four content types including dynamic, realtime, big data, and small data. We then build the cache policy with hops pending, which stores data on transmission nodes discontinuously in order to reduce redundant cache in space. Based on content types, we provide differential caching service to reduce redundancy furtherly and to improve the user's efficiency in retrieving content, such as no-cache, networking edge-based probability cache, networking sub-edge-based probability cache, and networking core-based probability cache. The experimental results confirm that the proposed caching mechanism can reduce data redundancy and the latency of content retrieving.
  • Related Articles

    [1]Yue Wenjing, Qu Wenwen, Lin Kuan, Wang Xiaoling. Survey of Cardinality Estimation Techniques Based on Machine Learning[J]. Journal of Computer Research and Development, 2024, 61(2): 413-427. DOI: 10.7544/issn1000-1239.202220649
    [2]Li Jianing, Xiong Ruibin, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Overview of the Frontier Progress of Causal Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(1): 59-84. DOI: 10.7544/issn1000-1239.202110780
    [3]Wang Ye, Chen Junwu, Xia Xin, Jiang Bo. Intelligent Requirements Elicitation and Modeling: A Literature Review[J]. Journal of Computer Research and Development, 2021, 58(4): 683-705. DOI: 10.7544/issn1000-1239.2021.20200740
    [4]Chen Jinyin, Chen Yipeng, Chen Yiming, Zheng Haibin, Ji Shouling, Shi Jie, Cheng Yao. Fairness Research on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(2): 264-280. DOI: 10.7544/issn1000-1239.2021.20200758
    [5]Cheng Keyang, Wang Ning, Shi Wenxi, Zhan Yongzhao. Research Advances in the Interpretability of Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. DOI: 10.7544/issn1000-1239.2020.20190485
    [6]Liu Chenyi, Xu Mingwei, Geng Nan, Zhang Xiang. A Survey on Machine Learning Based Routing Algorithms[J]. Journal of Computer Research and Development, 2020, 57(4): 671-687. DOI: 10.7544/issn1000-1239.2020.20190866
    [7]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [8]Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540
    [9]Meng Xiaofeng, Ma Chaohong, Yang Chen. Survey on Machine Learning for Database Systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803-1820. DOI: 10.7544/issn1000-1239.2019.20190446
    [10]Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
  • Cited by

    Periodical cited type(5)

    1. 周军芽,吴进伟,吴广飞,张何为. 基于Bi-LSTM神经网络的短文本敏感词识别方法. 武汉理工大学学报(信息与管理工程版). 2024(02): 312-316 .
    2. 石新满,胡广林,邵鑫,赵新爽,张思慧,乔晓. 基于人工智能大语言模型技术的电网优化运行应用分析. 自动化与仪器仪表. 2024(08): 180-184 .
    3. 李卓卓,蒋雨萌. 信息隐私量表对象、指标和应用的研究与展望. 情报理论与实践. 2024(10): 41-52 .
    4. 谭九生,李猛. 人机融合智能的伦理风险及其适应性治理. 昆明理工大学学报(社会科学版). 2022(03): 37-45 .
    5. 潘旭东,张谧,杨珉. 基于神经元激活模式控制的深度学习训练数据泄露诱导. 计算机研究与发展. 2022(10): 2323-2337 . 本站查看

    Other cited types(7)

Catalog

    Article views (444) PDF downloads (176) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return