• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Huijiao, Cong Peng, Jiang Hua, Wei Yongzhuang. Security Analysis of SIMON32/64 Based on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1056-1064. DOI: 10.7544/issn1000-1239.2021.20200900
Citation: Wang Huijiao, Cong Peng, Jiang Hua, Wei Yongzhuang. Security Analysis of SIMON32/64 Based on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1056-1064. DOI: 10.7544/issn1000-1239.2021.20200900

Security Analysis of SIMON32/64 Based on Deep Learning

Funds: This work was supported by the Guangxi Natural Science Foundation (2019GXNSFGA245004), the Science and Technology Major Project of Guangxi (Guike AA18118025), and the Project of Guangxi Key Laboratory of Trusted Software (KX202056).
More Information
  • Published Date: April 30, 2021
  • With the rapid development of the Internet of Things, lightweight block cipher provides a solid foundation for the data security in various resource constrained environments. Currently, the security analysis of lightweight block ciphers tends to be more and more automated and intelligent. Applying deep learning to analyze the security of lightweight block ciphers appears to be a new research hotspot in this area. In this paper, the neural network technology is used to the security analysis of SIMON32/64, a lightweight block cipher algorithm released by the National Security Agency (NSA) in 2013. The feedforward neural network and the convolutional neural network are used to simulate the case of single input differential to multi output differential in multi differential cryptanalysis. Some deep learning distinguishers of 6-round (or even 9-round) reduced SIMON32/64 are designed, and both the advantages and disadvantages of the two neural network structures under different conditions are investigated. A candidate key sieving method for the 9-round reduced SIMON32/64 is also presented by extending the 7-round distinguisher of the feed-forward and the convolution neural networks, where one round forward and one round backward of this 7-round distinguisher are respectively considered. The experimental results show that 65535 candidate keys were dramatically reduced to 675 by only using 128 chosen plaintext pairs. Compared with the traditional differential distinguishers of reduced SIMON32/64, the new distinguishers combined with deep learning notably reduce both the time complexity and data complexity.
  • Related Articles

    [1]Xie Guo, Zhang Huaiwen, Wang Le, Liao Qing, Zhang Aoqian, Zhou Zhili, Ge Huilin, Wang Zhiheng, Wu Guozheng. Acceptance and Funding Status of Artificial Intelligence Discipline Projects Under the National Natural Science Foundation of China in 2024[J]. Journal of Computer Research and Development, 2025, 62(3): 648-661. DOI: 10.7544/issn1000-1239.202550008
    [2]Li Xu, Zhu Rui, Chen Xiaolei, Wu Jinxuan, Zheng Yi, Lai Chenghang, Liang Yuxuan, Li Bin, Xue Xiangyang. A Survey of Hallucinations in Large Vision-Language Models: Causes, Evaluations and Mitigations[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440444
    [3]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [4]Zhang Mi, Pan Xudong, Yang Min. JADE-DB:A Universal Testing Benchmark for Large Language Model Safety Based on Targeted Mutation[J]. Journal of Computer Research and Development, 2024, 61(5): 1113-1127. DOI: 10.7544/issn1000-1239.202330959
    [5]Shu Wentao, Li Ruixiao, Sun Tianxiang, Huang Xuanjing, Qiu Xipeng. Large Language Models: Principles, Implementation, and Progress[J]. Journal of Computer Research and Development, 2024, 61(2): 351-361. DOI: 10.7544/issn1000-1239.202330303
    [6]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [7]Pan Xudong, Zhang Mi, Yang Min. Fishing Leakage of Deep Learning Training Data via Neuron Activation Pattern Manipulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2323-2337. DOI: 10.7544/issn1000-1239.20220498
    [8]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [9]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [10]Wang Ye, Chen Junwu, Xia Xin, Jiang Bo. Intelligent Requirements Elicitation and Modeling: A Literature Review[J]. Journal of Computer Research and Development, 2021, 58(4): 683-705. DOI: 10.7544/issn1000-1239.2021.20200740

Catalog

    Article views (646) PDF downloads (392) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return