• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Mao Keji, Fan Congling, Ye Fei, Wang Peng, Chen Qingzhang. Node Localization Algorithm in Wireless Sensor Networks Based on SVM[J]. Journal of Computer Research and Development, 2014, 51(11): 2427-2436. DOI: 10.7544/issn1000-1239.2014.20131071
Citation: Mao Keji, Fan Congling, Ye Fei, Wang Peng, Chen Qingzhang. Node Localization Algorithm in Wireless Sensor Networks Based on SVM[J]. Journal of Computer Research and Development, 2014, 51(11): 2427-2436. DOI: 10.7544/issn1000-1239.2014.20131071

Node Localization Algorithm in Wireless Sensor Networks Based on SVM

More Information
  • Published Date: October 31, 2014
  • Machine learning, as a learning method, uses the experience to improve its performance. The support vector machine (SVM), as a new model of the machine learning, is good at dealing with the condition of small sample size, nonlinear and high dimensional pattern recognition. The node localization algorithm based on SVM can locate the nodes in wireless sensor networks, WSN depending on the characteristics of machine learning algorithms. The basic idea is dividing the network area into several small aliquots of grids and each represents a certain class of machine learning algorithm. And when the machine learning algorithm learns the classes corresponding to the known beacon nodes, it will classify the unknown nodes’ localization and then further determine the position coordinates of the unknown nodes. For the SVM “one against one” location algorithm, the simulation results show that it has higher location accuracy and better tolerance of the ranging error, which is suitable for the network environment where the beacon nodes are sparse as it doesn’t require a high beacon node ratio. For the SVM decision tree location algorithm, the results show that it is not affected seriously by the coverage holes, which is applicable for the network environment where nodes distribution is uneven or the coverage holes exist.
  • Related Articles

    [1]Deng Xinguo, Zhang Xinhong, Chen Jiarui, Liu Qinghai, Chen Chuandong. A Weighted Directed Graph-Based Algorithm for Group Routing in Printed Circuit Boards[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440069
    [2]Wang Houzhen, Qin Wanying, Liu Qin, Yu Chunwu, Shen Zhidong. Identity Based Group Key Distribution Scheme[J]. Journal of Computer Research and Development, 2023, 60(10): 2203-2217. DOI: 10.7544/issn1000-1239.202330457
    [3]Zhang Qikun, Gan Yong, Wang Ruifang, Zheng Jiamin, Tan Yu’an. Inter-Cluster Asymmetric Group Key Agreement[J]. Journal of Computer Research and Development, 2018, 55(12): 2651-2663. DOI: 10.7544/issn1000-1239.2018.20170651
    [4]Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
    [5]Wang Haiyan, Dong Maowei. Latent Group Recommendation Based on Dynamic Probabilistic Matrix Factorization Model Integrated with CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1853-1863. DOI: 10.7544/issn1000-1239.2017.20170344
    [6]Li Xuefeng, Zhang Junwei, Ma Jianfeng, Liu Hai. TSNP: A Novel PCLSecure and Efficient Group Authentication Protocol in Space Information Network[J]. Journal of Computer Research and Development, 2016, 53(10): 2376-2392. DOI: 10.7544/issn1000-1239.2016.20160453
    [7]Meng Fei, Lan Julong, Hu Yuxiang. A Cooperative Game Based Data Center Backbone Network Bandwidth Allocation Policy[J]. Journal of Computer Research and Development, 2016, 53(6): 1306-1313. DOI: 10.7544/issn1000-1239.2016.20148400
    [8]Zhang Qikun, Wang Ruifang, Tan Yu'an. Identity-Based Authenticated Asymmetric Group Key Agreement[J]. Journal of Computer Research and Development, 2014, 51(8): 1727-1738. DOI: 10.7544/issn1000-1239.2014.20121165
    [9]Wang Feng, Zhou Yousheng, Gu Lize, Yang Yixian. A Multi-Policies Threshold Signature Scheme with Group Verifiability[J]. Journal of Computer Research and Development, 2012, 49(3): 499-505.
    [10]Li Shaofang, Hu Shanli, Shi Chunyi. An Anytime Coalition Structure Generation Based on the Grouping Idea of Cardinality Structure[J]. Journal of Computer Research and Development, 2011, 48(11): 2047-2054.
  • Cited by

    Periodical cited type(3)

    1. 潘佳,于秀兰. 基于社交意识和支付激励的D2D协作传输策略. 计算机应用研究. 2023(06): 1801-1805 .
    2. 刘琳岚,谭镇阳,舒坚. 基于图神经网络的机会网络节点重要度评估方法. 计算机研究与发展. 2022(04): 834-851 . 本站查看
    3. 王淳,吴仕荣. 舰船自组织网络数据分发机制研究. 舰船科学技术. 2020(14): 166-168 .

    Other cited types(2)

Catalog

    Article views (1291) PDF downloads (1172) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return