• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Haiyan, Dong Maowei. Latent Group Recommendation Based on Dynamic Probabilistic Matrix Factorization Model Integrated with CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1853-1863. DOI: 10.7544/issn1000-1239.2017.20170344
Citation: Wang Haiyan, Dong Maowei. Latent Group Recommendation Based on Dynamic Probabilistic Matrix Factorization Model Integrated with CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1853-1863. DOI: 10.7544/issn1000-1239.2017.20170344

Latent Group Recommendation Based on Dynamic Probabilistic Matrix Factorization Model Integrated with CNN

More Information
  • Published Date: July 31, 2017
  • Group recommendation has recently received great attention in the academic sector due to its significant utility in real applications. However, the available group recommendation methods mainly aggregate individual recommendation results or personal preferences directly based on an analysis of rating matrix. The relationship among users, groups, and services has not been taken into comprehensive consideration during group recommendation, which will interfere with the accuracy of recommendation results. Inspired by latent factor model and state space model, we propose a latent group recommendation (LGR) based on dynamic probabilistic matrix factorization model integrated with convolutional neural network (DPMFM-CNN), which comprehensively investigates rating matrix, service description documents and time factor and makes a joint analysis of the relationship among those three entities. The proposed LGR method firstly obtains a prior distribution for service latent factor model with the employment of text representation method based on convolutional neural network (CNN). Secondly, it integrates state space model with probabilistic matrix factorization model and draws user latent vector together with service latent vector. Thirdly, latent groups are detected through the use of multiple clustering algorithms on user latent vectors. Finally, group latent vectors are aggregated with average strategy and group rating can be generated. In addition, simulation on MovieLens is performed and comparison results demonstrate that LGR has better performance in efficiency and accuracy for group recommendation.
  • Related Articles

    [1]Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572
    [2]Wang Nian, Peng Zhenghong, Cui Li. EasiFFRA: A Fast Feature Reduction Algorithm Based on Neighborhood Rough Set[J]. Journal of Computer Research and Development, 2019, 56(12): 2578-2588. DOI: 10.7544/issn1000-1239.2019.20180541
    [3]Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961
    [4]Deng Dayong, Miao Duoqian, Huang Houkuan. Analysis of Concept Drifting and Uncertainty in an Information Table[J]. Journal of Computer Research and Development, 2016, 53(11): 2607-2612. DOI: 10.7544/issn1000-1239.2016.20150803
    [5]Fu Zhiyao, Gao Ling, Sun Qian, Li Yang, Gao Ni. Evaluation of Vulnerability Severity Based on Rough Sets and Attributes Reduction[J]. Journal of Computer Research and Development, 2016, 53(5): 1009-1017. DOI: 10.7544/issn1000-1239.2016.20150065
    [6]Zhang Zhifei, Miao Duoqian, Nie Jianyun, Yue Xiaodong. Sentiment Uncertainty Measure and Classification of Negative Sentences[J]. Journal of Computer Research and Development, 2015, 52(8): 1806-1816. DOI: 10.7544/issn1000-1239.2015.20150253
    [7]Zhu Hong, Ding Shifei, Xu Xinzheng. An AP Clustering Algorithm of Fine-Grain Parallelism Based on Improved Attribute Reduction[J]. Journal of Computer Research and Development, 2012, 49(12): 2638-2644.
    [8]Wang Xizhao, Wang Tingting, and Zhai Junhai. An Attribute Reduction Algorithm Based on Instance Selection[J]. Journal of Computer Research and Development, 2012, 49(11): 2305-2310.
    [9]Yang Bin and Xu Baowen. Distributive Reduction of Attributes in Concept Lattice[J]. Journal of Computer Research and Development, 2008, 45(7).
    [10]Shang Lin, Wan Qiong, Yao Wangshu, Wang Jingen, Chen Shifu. An Approach for Reduction of Continuous-Valued Attributes[J]. Journal of Computer Research and Development, 2005, 42(7): 1217-1224.
  • Cited by

    Periodical cited type(10)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法. 山东大学学报(理学版). 2023(05): 26-35+52 .
    3. 张清华,艾志华,张金镇. 融合密度与邻域覆盖约简的分类方法. 陕西师范大学学报(自然科学版). 2022(03): 33-42 .
    4. 张雨新,孙达明,李飞. 基于粒化单调的不完备混合型数据增量式属性约简算法. 计算机应用与软件. 2021(03): 279-286 .
    5. 邹丽,任思远,杨光,杨鑫华. 基于改进条件邻域熵的接头疲劳寿命影响因素分析. 焊接学报. 2021(11): 43-50+99-100 .
    6. 刘正,陈雪勤,张书锋. 基于最小化邻域互信息的邻域熵属性约简算法. 微电子学与计算机. 2020(03): 26-32 .
    7. 陈帅,张贤勇,唐玲玉,姚岳松. 邻域互补信息度量及其启发式属性约简. 数据采集与处理. 2020(04): 630-641 .
    8. 周艳红,张强. 基于三层粒结构的三支邻域熵. 数学的实践与认识. 2020(14): 83-93 .
    9. 亓慧,史颖. 不同度量下集成属性选择器的对比研究. 山西大学学报(自然科学版). 2019(04): 848-853 .
    10. 周艳红,张迪,张强. 基于单调信息度量的特定类属性约简. 内江师范学院学报. 2019(12): 35-39 .

    Other cited types(11)

Catalog

    Article views (1562) PDF downloads (682) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return