• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Minqing, Du Weidong, Yang Xiaoyuan, HanYiliang. A Fully Secure KP-ABE Scheme in the Standard Model[J]. Journal of Computer Research and Development, 2015, 52(8): 1893-1901. DOI: 10.7544/issn1000-1239.2015.20140605
Citation: Zhang Minqing, Du Weidong, Yang Xiaoyuan, HanYiliang. A Fully Secure KP-ABE Scheme in the Standard Model[J]. Journal of Computer Research and Development, 2015, 52(8): 1893-1901. DOI: 10.7544/issn1000-1239.2015.20140605

A Fully Secure KP-ABE Scheme in the Standard Model

More Information
  • Published Date: July 31, 2015
  • With the invention of many new applications such as social network and cloud storage, attribute-based encryption has been studied and applied widely because of its great flexibility, high efficiency and high security. As the current existing attributed-based encryption schemes are most selectively secure, which can’t meet the need of the reality well, how to construct fully secure ABE has been the focus of cryptography. Aimed at the problems mentioned above, an key-policy ABE scheme is firstly constructed by using the dual encryption system in this paper, then the scheme is proved to fully secure in the standard model with the new ideas proposed by Lewko and Waters. Finally the comparison results show that the public and private key lengths of our scheme are similar to the selectively secure GPSW scheme, but our scheme is more secure. Compared with the Lewko-Waters scheme, our scheme has the same security, but has shorter public and private key lengths, which is more efficient. What’s more, similar to the ciphertext-policy scheme of Lekwo-Waters, the techniques of selective security are also utilized in the security proof of our key-policy ABE, which is important in the research of the relation between the selective and full security models.
  • Related Articles

    [1]Wang Yuwei, Liu Min, Ma Cheng, Li Pengfei. High Performance Load Balancing Mechanism for Network Function Virtualization[J]. Journal of Computer Research and Development, 2018, 55(4): 689-703. DOI: 10.7544/issn1000-1239.2018.20170923
    [2]Wang Peng, Huang Yan, Li Kun, Guo Youming. Load Balancing Degree First Algorithm on Phase Space for Cloud Computing Cluster[J]. Journal of Computer Research and Development, 2014, 51(5): 1095-1107.
    [3]Shen Zhijun, Zeng Huashen. A Load Balanced Switch Architecture Based on Implicit Flow Splitter[J]. Journal of Computer Research and Development, 2012, 49(6): 1220-1227.
    [4]Zhang Lilun, Ye Hong, Wu Jianping, Song Junqiang. Parallel Load-Balancing Performance Analysis Based on Maximal Ratio of Load Offset[J]. Journal of Computer Research and Development, 2010, 47(6).
    [5]Liu Xinhua, Li Fangmin, Kuang Hailan, Fang Yilin. An Distributed and Directed Clustering Algorithm Based on Load Balance for Wireless Sensor Network[J]. Journal of Computer Research and Development, 2009, 46(12): 2044-2052.
    [6]Wang Xianghui, Zhang Guoyin, and Xie Xiaoqin. A Load Balance Clustering Algorithm for Multilevel Energy Heterogeneous Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2008, 45(3): 392-399.
    [7]Chai Yunpeng, Gu Lei, and Li Sanli. Cluster-Based Edge Streaming Server with Adaptive Load Balance in Mobile Grid[J]. Journal of Computer Research and Development, 2007, 44(12): 2136-2142.
    [8]Li Zhenyu, Xie Gaogang. A Load Balancing Algorithm for DHT-Based P2P Systems[J]. Journal of Computer Research and Development, 2006, 43(9): 1579-1585.
    [9]Tian Junfeng, Liu Yuling, and Du Ruizhong. Research of a Load Balancing Model Based on Mobile Agent[J]. Journal of Computer Research and Development, 2006, 43(9): 1571-1578.
    [10]Zhang Xiangquan, Guo Wei. A Bidirectional Path Re-Selection Based Load-Balanced Routing Protocol for Ad-Hoc Networks[J]. Journal of Computer Research and Development, 2006, 43(2): 218-223.

Catalog

    Article views (1008) PDF downloads (578) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return