• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Gou Chengcheng, Du Pan, He Min, Liu Yue, Cheng Xueqi. tsk-shell: An Algorithm for Finding Topic-Sensitive Influential Spreaders[J]. Journal of Computer Research and Development, 2017, 54(2): 361-368. DOI: 10.7544/issn1000-1239.2017.20150819
Citation: Gou Chengcheng, Du Pan, He Min, Liu Yue, Cheng Xueqi. tsk-shell: An Algorithm for Finding Topic-Sensitive Influential Spreaders[J]. Journal of Computer Research and Development, 2017, 54(2): 361-368. DOI: 10.7544/issn1000-1239.2017.20150819

tsk-shell: An Algorithm for Finding Topic-Sensitive Influential Spreaders

More Information
  • Published Date: January 31, 2017
  • Discovering influential spreaders is a valuable task in social networks, especially for the popularity prediction and analysis of online contents on microblogs, such as Twitter and Weibo. The k-shell decomposition (k-core), which identifies influential spreaders located in the core of a network, attracts more attention due to its simpleness and effectiveness compared with various related methods, such as indegree, betweenness centrality and PageRank. However, k-shell method only considers the factor of the network position of nodes and ignores the impacts of the content itself in information diffusion. The content itself plays an important role in the process of diffusion. For example, ones just retweet their interested tweets in microblogs. The spread ability of users depends not only on topology structures but also on the published contents, and therefore a unified model considering the two aspects simultaneously is proposed to model users' influence. Specifically, the topics hidden in user generated contents (UGC) are exploited to model the users' propagation probability and a topic-sensitive k-shell (tsk-shell) decomposition algorithm is proposed. Experimental studies on a real Twitter dataset show that the tsk-shell outperforms traditional k-shell by 40% on average in the task of finding top k influential users, which proves the effectiveness of the tsk-shell algorithm.
  • Related Articles

    [1]Guo Doudou, Xu Weihua. R-FCCL: An Approach of Fuzzy-Based Concept-Cognitive Learning with Robustness for High-Dimensional Data[J]. Journal of Computer Research and Development, 2025, 62(2): 383-396. DOI: 10.7544/issn1000-1239.202330428
    [2]Wang Qi, Li Deyu, Zhai Yanhui, Zhang Shaoxia. Parameterized Fuzzy Decision Implication[J]. Journal of Computer Research and Development, 2022, 59(9): 2066-2074. DOI: 10.7544/issn1000-1239.20210539
    [3]Wang Xia, Jiang Shan, Li Junyu, Wu Weizh. A Construction Method of Triadic Concepts[J]. Journal of Computer Research and Development, 2019, 56(4): 844-853. DOI: 10.7544/issn1000-1239.2019.20180315
    [4]Zou Li, Feng Kaihua, Liu Xin. Linguistic-Valued Intuitionistic Fuzzy Concept Lattice and Its Application[J]. Journal of Computer Research and Development, 2018, 55(8): 1726-1734. DOI: 10.7544/issn1000-1239.2018.20180240
    [5]Zhang Lei, Zhang Hongli, Yin Lihua, Han Daojun. Theory and Algorithms of Attribute Decrement for Concept Lattice[J]. Journal of Computer Research and Development, 2013, 50(2): 248-259.
    [6]Shi Zhibin and Huang Houkuan. Reductive Data Cube Based on Formal Concept Analysis[J]. Journal of Computer Research and Development, 2009, 46(11): 1956-1962.
    [7]Xu Jiaqing, Peng Xin, and Zhao Wenyun. Program Clustering for Comprehension Based on Fuzzy Formal Concept Analysis[J]. Journal of Computer Research and Development, 2009, 46(9): 1556-1566.
    [8]Yang Bin and Xu Baowen. Distributive Reduction of Attributes in Concept Lattice[J]. Journal of Computer Research and Development, 2008, 45(7).
    [9]Wang Liming and Zhang Zhuo. An Algorithm for Mining Closed Frequent Itemsets Based on Apposition Assembly of Iceberg Concept Lattices[J]. Journal of Computer Research and Development, 2007, 44(7): 1184-1190.
    [10]Wang Haixia and Han Chengde. Formal Method Research on Integer Multiplier Verification[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(16)

    1. 郭豆豆,徐伟华. R-FCCL:一种面向高维数据的稳健模糊概念认知学习方法. 计算机研究与发展. 2025(02): 383-396 . 本站查看
    2. 王太滨,李德玉,翟岩慧. 基于证据理论的多粒度决策背景最优粒度选取方法. 山西大学学报(自然科学版). 2024(04): 737-750 .
    3. 张家录,吴霞. 形式背景上近似推理生成决策蕴涵研究. 自动化学报. 2024(11): 2286-2300 .
    4. 李腾,李德玉,翟岩慧,张少霞. 介粒度空间中的最优粒度选择和属性约简. 计算机科学. 2023(10): 71-79 .
    5. 李金海,贺建君. 多粒度形式背景的不确定性度量与最优粒度选择. 控制与决策. 2022(05): 1299-1308 .
    6. 李金海,邓小媛,智慧来. 多粒度实值形式概念分析. 陕西师范大学学报(自然科学版). 2022(03): 52-64 .
    7. 李金海,周新然. 多粒度决策形式背景的属性约简. 模式识别与人工智能. 2022(05): 387-400 .
    8. 王琪,李德玉,翟岩慧,张少霞. 含参模糊决策蕴涵. 计算机研究与发展. 2022(09): 2066-2074 . 本站查看
    9. 李金海,王飞,吴伟志,徐伟华,杨习贝,折延宏. 基于粒计算的多粒度数据分析方法综述. 数据采集与处理. 2021(03): 418-435 .
    10. 薛占熬,孙冰心,侯昊东,荆萌萌. 基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法. 计算机科学. 2021(10): 98-106 .
    11. 智慧来,李逸楠. 形式概念分析中的面向对象概念约简. 海南热带海洋学院学报. 2021(05): 66-71 .
    12. 汪秋分,卞洪亚. 决策形式背景的双向决策规则研究. 数学的实践与认识. 2021(21): 198-206 .
    13. 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化. 山东大学学报(理学版). 2020(05): 1-12 .
    14. 李金海,闫梦宇,徐伟华,折延宏,张文修. 概念认知学习的若干问题与思考. 西北大学学报(自然科学版). 2020(04): 501-515 .
    15. 李金海,魏玲,张卓,翟岩慧,张涛,智慧来,米允龙. 概念格理论与方法及其研究展望. 模式识别与人工智能. 2020(07): 619-642 .
    16. 温馨,闫心怡,陈泽华. 中心概念及其在规则提取中的应用. 计算机科学与探索. 2020(11): 1967-1974 .

    Other cited types(21)

Catalog

    Article views (1241) PDF downloads (565) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return