• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Xueshi, Dong Wenyong, Wang Yufeng. Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2017, 54(8): 1751-1762. DOI: 10.7544/issn1000-1239.2017.20170347
Citation: Dong Xueshi, Dong Wenyong, Wang Yufeng. Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2017, 54(8): 1751-1762. DOI: 10.7544/issn1000-1239.2017.20170347

Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem

More Information
  • Published Date: July 31, 2017
  • Balanced traveling salesman problem (BTSP), a variant of traveling salesman problem (TSP), is another combination optimization problem, which can be applied in many fields such as the optimization problem for gas turbine engines (GTE). BTSP can only model optimization problems with the single traveling salesman and task, but can’t model and optimize the problem with multiple salesmen and tasks at the same time. Therefore, this paper firstly provides a multi-objective balanced traveling salesman problem (MBTSP) model, which can model the optimization problems with multiple salesmen and tasks. Specifically it can be applied to the real-world problems with multiple objectives or individuals, for example, the optimization for multiple GTE. Some literatures have proved that ITO algorithm and genetic algorithms can show better performance in solving combination optimization problems, therefore, the paper utilizes the hybrid ITO algorithm (HITO) and hybrid genetic algorithm (GA) to solve MBTSP. For HITO, it utilizes ant colony optimization (ACO) to produce a probabilistic generative model based on graph, and then uses the drift and volatility operators to update the model, and obtains optimum solution. For the hybrid GA, the first is improved by greedy method called GAG, the second GA is optimized by incorporating hill-climbing named GAHC, and the final one is GASA. In order to effectively test the algorithms, the paper makes extensive experiments using small scale to large scale MBTSP data. The experiments show that the algorithms are effective and reveal the different characteristics in solving MBTSP problem.
  • Related Articles

    [1]Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295
    [2]Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376
    [3]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Du Ming, Yang Yun, Zhou Junfeng, Chen Ziyang, Yang Anping. Efficient Methods for Label-Constraint Reachability Query[J]. Journal of Computer Research and Development, 2020, 57(9): 1949-1960. DOI: 10.7544/issn1000-1239.2020.20190569
    [6]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [7]Song Pan, Jing Liping. Exploiting Label Relationships in Multi-Label Classification with Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(8): 1751-1759. DOI: 10.7544/issn1000-1239.2018.20180362
    [8]Ma Gang, Du Yuge, An Bo, Zhang Bo, Wang Wei, Shi Zhongzhi. Risk Evaluation of Complex Information System Based on Threat Propagation Sampling[J]. Journal of Computer Research and Development, 2015, 52(7): 1642-1659. DOI: 10.7544/issn1000-1239.2015.20140184
    [9]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [10]She Qiaoqiao, Yu Yang, Jiang Yuan, and Zhou Zhihua. Large-Scale Image Annotation via Random Forest Based Label Propagation[J]. Journal of Computer Research and Development, 2012, 49(11): 2289-2295.

Catalog

    Article views (1809) PDF downloads (695) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return