• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xu Zhiwei, Zhang Yujun. Efficient Detection of False Data Fusion in IoT[J]. Journal of Computer Research and Development, 2018, 55(7): 1488-1497. DOI: 10.7544/issn1000-1239.2018.20180123
Citation: Xu Zhiwei, Zhang Yujun. Efficient Detection of False Data Fusion in IoT[J]. Journal of Computer Research and Development, 2018, 55(7): 1488-1497. DOI: 10.7544/issn1000-1239.2018.20180123

Efficient Detection of False Data Fusion in IoT

More Information
  • Published Date: June 30, 2018
  • Data fusion is the critical process for data transmission in the Internet of things (IoT). In data fusion process, the original sensing data is processed and aggregated in the network, and only the aggregated results of data fusion are sent to the application layer, which effectively reduces the resource consumption and alleviates the workload on the sink node. Since no network node caches the aggregated data in the data fusion process, it is impossible to detect and locate the false data injection attack against data fusion results. In order to mitigate this significant vulnerability, an efficient detection scheme of false data fusion is proposed in this paper. By modeling the data fusion process, we discover and model the relationship between the input data and the fusion results, and apply the obtained model to detect abnormal data fusion results. In this way, we can mitigate malicious data fusion and optimize the IoT transmission security. In detail, we first collect input data and the relevant data fusion results for each node, and a compressed feature representation mechanism is designed to improve the data collection efficiency and reduce the resource consumption. In addition, a data fusion model based on probabilistic graph model is proposed to depict the spatial and temporal relationship between the input data and the data fusion results. Ultimately, we take the model to detect the abnormal data fusion results in an efficient way. The experimental results demonstrate that the proposed detection scheme can detect malicious data fusion operations efficiently and accurately and thus guarantee IoT transmission security.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhang Xuewang, Yao Yaning, Fu Jiali, Xie Haofei. Efficient Multi-Authority CP-ABE IoT Data Sharing Scheme with Hidden Policies[J]. Journal of Computer Research and Development, 2023, 60(10): 2193-2202. DOI: 10.7544/issn1000-1239.202330459
    [3]Long Saiqin, Huang Jinna, Li Zhetao, Pei Tingrui, Xia Yuanqing. Energy Efficiency Evaluation Method of Data Centers for Cloud-Network Integration[J]. Journal of Computer Research and Development, 2021, 58(6): 1248-1260. DOI: 10.7544/issn1000-1239.2021.20201069
    [4]Sun Cong, Li Zhankui, Chen Liang, Ma Jianfeng, Qiao Xinbo. Digital Currency Features Oriented Fine-Grained Code Injection Attack Detection[J]. Journal of Computer Research and Development, 2021, 58(5): 1035-1044. DOI: 10.7544/issn1000-1239.2021.20200937
    [5]Wang Jiye, Zhou Biyu, Zhang Fa, Shi Xiang, Zeng Nan, Liu Zhiyong. Data Center Energy Consumption Models and Energy Efficient Algorithms[J]. Journal of Computer Research and Development, 2019, 56(8): 1587-1603. DOI: 10.7544/issn1000-1239.2019.20180574
    [6]Liu Botao, Peng Changgen, Wu Ruixue, Ding Hongfa, Xie Mingming. Lightweight Format-Preserving Encryption Algorithm Oriented to Number[J]. Journal of Computer Research and Development, 2019, 56(7): 1488-1497. DOI: 10.7544/issn1000-1239.2019.20180745
    [7]Zhang Xingzhong, Wang Yunsheng, Zeng Zhi, Niu Baoning. An Efficient Filtering-and-Refining Retrieval Method for Big Audio Data[J]. Journal of Computer Research and Development, 2015, 52(9): 2025-2032. DOI: 10.7544/issn1000-1239.2015.20140694
    [8]Ding Youwei, Qin Xiaolin, Liu Liang, Wang Taochun. An Energy Efficient Algorithm for Big Data Processing in Heterogeneous Cluster[J]. Journal of Computer Research and Development, 2015, 52(2): 377-390. DOI: 10.7544/issn1000-1239.2015.20140126
    [9]Zhao Yunshan, Gong Yunzhan, Zhou Ao, Wang Qian, and Zhou Hongbo. False Positive Elimination in Static Defect Detection[J]. Journal of Computer Research and Development, 2012, 49(9): 1822-1831.
    [10]Yu Hao, Wang Bin, Xiao Gang, Yang Xiaochun. Distance-Based Outlier Detection on Uncertain Data[J]. Journal of Computer Research and Development, 2010, 47(3): 474-484.
  • Cited by

    Periodical cited type(14)

    1. 吴宪,汤红波,赵宇,许明艳. 一种有状态容器跨集群实时迁移方法. 计算机研究与发展. 2024(02): 494-502 . 本站查看
    2. 张人杰,李頔,王方,刘慧. NFV场景下基于协议和目的端口的负载均衡策略. 湖南邮电职业技术学院学报. 2024(03): 1-7 .
    3. 王雅倩,陈心怡,曲睿,周振宇. 基于SDN/NFV的电力物联网时延敏感业务编排方法. 华北电力大学学报(自然科学版). 2023(01): 84-91 .
    4. 苏警. 面向大数据的可扩展网络服务框架设计. 兰州文理学院学报(自然科学版). 2023(01): 50-55 .
    5. 陈婷婷,肖源源. 浅析“新工科”背景下大数据综合实验平台的建设. 中国新通信. 2023(01): 42-47 .
    6. 刘光远,曹晶仪,庞紫园,黄书翠. 一种低时延虚拟网络功能映射及调度优化算法. 西安交通大学学报. 2023(02): 121-130 .
    7. 王媛滔,舒兆港,钟一文,邱彩钰,田佳霖. 基于VNF实例共享的服务功能链部署算法. 计算机应用研究. 2023(06): 1806-1811 .
    8. 熊泽凯,王素红,王靖君,祝长鸿,覃团发. 移动边缘计算中服务功能链的自适应优化部署策略. 电讯技术. 2023(11): 1678-1686 .
    9. 张庆华,张先超,王寅昊,陆军. 面向医疗急救的信息网络服务功能链调度方法. 电子学报. 2023(11): 3128-3136 .
    10. 陈炳丰,谢光强,朱鉴. 基于FusionCompute的虚拟化技术在计算机实验室中的应用. 实验技术与管理. 2022(04): 224-227 .
    11. 任诚,陈绪祥,唐斌文,王宇,李豪. 多源多播服务功能链优化部署算法. 计算机应用研究. 2022(06): 1814-1819 .
    12. 朱国晖,景文焕,李世昌. 基于改进麻雀搜索算法的服务功能链优化映射算法. 计算机应用研究. 2022(07): 2120-2123+2131 .
    13. 陈嘉亮,王丰,张潇. 移动边缘计算网络下的服务功能链部署优化设计. 计算机应用研究. 2022(10): 3108-3113 .
    14. 陈杨,刘作,黎聪,龙俊霖,赵群帅. 基于SDN与NFV的云通信软交换能力切片化部署稳定性研究. 通信技术. 2021(09): 2163-2168 .

    Other cited types(37)

Catalog

    Article views (1282) PDF downloads (389) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return