• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Dongming, Guo Fangzhou, Pan Jiacheng, Zheng Wenting, Chen Wei. Visual Analysis for Anomaly Detection in Time-Series: A Survey[J]. Journal of Computer Research and Development, 2018, 55(9): 1843-1852. DOI: 10.7544/issn1000-1239.2018.20180126
Citation: Han Dongming, Guo Fangzhou, Pan Jiacheng, Zheng Wenting, Chen Wei. Visual Analysis for Anomaly Detection in Time-Series: A Survey[J]. Journal of Computer Research and Development, 2018, 55(9): 1843-1852. DOI: 10.7544/issn1000-1239.2018.20180126

Visual Analysis for Anomaly Detection in Time-Series: A Survey

More Information
  • Published Date: August 31, 2018
  • Anomaly detection for time-series denotes the detection and analysis of abnormal and unusual patterns, trends and features. Automatic methods sometimes fail to detect anomalies that are subtle, fuzzy or uncertain, while visual analysis can overcome this challenge by integrating the capability of human users and data mining approaches through visual representations of the data and visual interface. In this paper, we identify the challenges of anomaly detection, and describe the existing works of visual analysis along two categories: types of anomalies (attributes, topologies and hybrids), and anomaly detection means (direct projection, clustering and machine learning). We highlight future research directions.
  • Related Articles

    [1]Li Gengsong, Liu Yi, Zheng Qibin, Li Xiang, Liu Kun, Qin Wei, Wang Qiang, Yang Changhong. Algorithm Selection Method Based on Multi-Objective Hybrid Ant Lion Optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. DOI: 10.7544/issn1000-1239.202220769
    [2]She Xiaomeng, Du Yang, Ma Wenjing, Yin Zhaoxia. Reversible Data Hiding in Encrypted Images Based on Pixel Prediction and Block Labeling[J]. Journal of Computer Research and Development, 2022, 59(9): 2089-2100. DOI: 10.7544/issn1000-1239.20210495
    [3]Shen Yijie, Li Liangcheng, Liu Ziwei, Liu Tiantian, Luo Hao, Shen Ting, Lin Feng, Ren Kui. Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation[J]. Journal of Computer Research and Development, 2021, 58(11): 2350-2363. DOI: 10.7544/issn1000-1239.2021.20210632
    [4]Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
    [5]Song Chuanming, Min Xin, Xie Weidong, Yin Baocai, Wang Xianghai. Elastic Motion Estimation Algorithm Using Two-Bit-Depth Pixels[J]. Journal of Computer Research and Development, 2019, 56(11): 2469-2484. DOI: 10.7544/issn1000-1239.2019.20180699
    [6]Bao Zhenkun, Zhang Weiming, Cheng Sen, Zhao Xianfeng. ±1 Steganographic Codes by Applying Syndrome-Trellis Codes to Dynamic Distortion Model in Pixel Chain[J]. Journal of Computer Research and Development, 2014, 51(8): 1739-1747. DOI: 10.7544/issn1000-1239.2014.20121213
    [7]Xu Junling, Zhou Yuming, Chen Lin, Xu Baowen. An Unsupervised Feature Selection Approach Based on Mutual Information[J]. Journal of Computer Research and Development, 2012, 49(2): 372-382.
    [8]Chang Qun, Wang Xiaolong, Lin Yimeng, Daniel S. Yeung, Chen Qingcai. Reducing Gaussian Kernel's Local Risks by Global Kernel and Two-Stage Model Selection Based on Genetic Algorithms[J]. Journal of Computer Research and Development, 2007, 44(3).
    [9]Tian Chunna, Gao Xinbo, and Li Jie. An Example Selection Method for Active Learning Based on Embedded Bootstrap Algorithm[J]. Journal of Computer Research and Development, 2006, 43(10): 1706-1712.
    [10]Liu Tao, Wu Gongyi, Chen Zheng. An Effective Unsupervised Feature Selection Method for Text Clustering[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(11)

    1. 李源,林秋兰,陈安之,杨国利,宋威,王国仁. 基于树分解的时序最短路径计数查询算法. 计算机应用. 2024(08): 2446-2454 .
    2. 张千桢,郭得科,赵翔. 面向时序图的季节突发性子图挖掘算法. 软件学报. 2024(12): 5526-5543 .
    3. 梁锐杰,程永利. 基于NUMA延迟发送的时变图弱连通分量求解. 计算机系统应用. 2023(03): 322-329 .
    4. 许成伟,邹晓红. 基于时序图的替补种子节点挖掘算法研究. 燕山大学学报. 2023(05): 433-440 .
    5. 李凤英,申会强,董荣胜. 基于k~d-MDD的时序图紧凑表示. 计算机研究与发展. 2022(06): 1286-1296 . 本站查看
    6. 邹晓红,许成伟,陈晶,宋彪,王明月. 大规模时序图中种子节点挖掘算法研究. 通信学报. 2022(09): 157-168 .
    7. 胡艳. 基于循环神经网络和卡尔曼滤波器的多变量混沌时间序列预测. 计算机应用与软件. 2021(04): 281-287+323 .
    8. 何珍文,吴冲龙,刘刚,田宜平,张夏林,陈麒玉. 地学时序大数据的相似性度量与索引方法综述. 地质科技通报. 2020(04): 44-50 .
    9. 潘敏佳,李荣华,赵宇海,王国仁. 面向时序图数据的快速环枚举算法. 软件学报. 2020(12): 3823-3835 .
    10. 周翔,蔡声镇. 基于粒度计算的大数据集频繁项挖掘方法. 计算机仿真. 2020(12): 287-290+464 .
    11. 徐超,林友勇,李少利. 物联数据建模分析框架探讨. 智能物联技术. 2019(03): 9-13 .

    Other cited types(20)

Catalog

    Article views (2483) PDF downloads (1106) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return