• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Bo, Liu Jinglei. An Algorithm for Computing Core of Boolean Game[J]. Journal of Computer Research and Development, 2018, 55(8): 1735-1750. DOI: 10.7544/issn1000-1239.2018.20180360
Citation: Wang Bo, Liu Jinglei. An Algorithm for Computing Core of Boolean Game[J]. Journal of Computer Research and Development, 2018, 55(8): 1735-1750. DOI: 10.7544/issn1000-1239.2018.20180360

An Algorithm for Computing Core of Boolean Game

More Information
  • Published Date: July 31, 2018
  • Boolean game is an important framework to compute the solution of multi-agent cooperation, which represents the static agent games scenario based on propositional logic. In Boolean games, every agent uses propositional formulas to represent its goals, so whether its goals can be satisfied depending on the propositional formulas’ truth value. At present, Boolean game is mainly studied from the knowledge representation perspective and solving pure Nash equilibrium, but computing core from coalitional view is not enough. Computing core of Boolean games is the procedure of generating strategy profiles and comparing with strategy profiles. Firstly, in order to solve the solution of constraint satisfaction problem of Boolean games, we structure hypergraph on Boolean games where the action variables are regarded as the vertices and the goals are regarded as the hyperedge. Secondly, we see agents as the vertices and the dependence relationship between agents as edge to structure a directed dependency graph, which can get a set of stable sets to decompose Boolean games as smaller Boolean games on the scale. These two structures simplify the generation process and comparison process, and then improve the efficiency of computing core of Boolean games to some extent. Then, based on the hypertree decomposition and the stable set decomposition of the dependent graph, we give different methods of computing core of Boolean game. Finally, we verify the validity of this algorithm through the experimental evaluation.
  • Related Articles

    [1]Jiang Zetao, Huang Qinyang, Zhang Huijuan, Jin Xin, Huang Jingfan, Liao Peiqi. Unpaired Low-Light Image Enhancement Method Based on Global Consistency[J]. Journal of Computer Research and Development, 2025, 62(4): 876-887. DOI: 10.7544/issn1000-1239.202330904
    [2]Qu Zhiguo, Chen Weilong, Sun Le, Liu Wenjie, Zhang Yanchun. ECG-QGAN: A ECG Generative Information System Based on Quantum Generative Adversarial Networks[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440527
    [3]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [4]Guo Zhengshan, Zuo Jie, Duan Lei, Li Renhao, He Chengxin, Xiao Yingjie, Wang Peiyan. A Generative Adversarial Negative Sampling Method for Knowledge Hypergraph Link Prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756. DOI: 10.7544/issn1000-1239.20220074
    [5]Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
    [6]Qian Yaguan, He Niannian, Guo Yankai, Wang Bin, Li Hui, Gu Zhaoquan, Zhang Xuhong, Wu Chunming. An Evasion Algorithm to Fool Fingerprint Detector for Deep Neural Networks[J]. Journal of Computer Research and Development, 2021, 58(5): 1106-1117. DOI: 10.7544/issn1000-1239.2021.20200903
    [7]Yu Haitao, Yang Xiaoshan, Xu Changsheng. Antagonistic Video Generation Method Based on Multimodal Input[J]. Journal of Computer Research and Development, 2020, 57(7): 1522-1530. DOI: 10.7544/issn1000-1239.2020.20190479
    [8]Jiang Bin, Liu Hongyu, Yang Chao, Tu Wenxuan, Zhao Zilong. A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2485-2493. DOI: 10.7544/issn1000-1239.2019.20180656
    [9]Zhang Han, Guo Yuanbo, Li Tao. Domain Named Entity Recognition Combining GAN and BiLSTM-Attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858. DOI: 10.7544/issn1000-1239.2019.20180733
    [10]Song Kehui, Zhang Ying, Zhang Jiangwei, Yuan Xiaojie. A Generative Model for Synthesizing Structured Datasets Based on GAN[J]. Journal of Computer Research and Development, 2019, 56(9): 1832-1842. DOI: 10.7544/issn1000-1239.2019.20180353
  • Cited by

    Periodical cited type(2)

    1. 陈传毅,戴卫军. 基于贝叶斯网的高维数据隐藏模式挖掘. 计算机仿真. 2021(01): 287-290+349 .
    2. 黄德胜. 社交网站数据采集与热点分析技术研究. 微型电脑应用. 2021(04): 66-69 .

    Other cited types(1)

Catalog

    Article views (1242) PDF downloads (468) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return