• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cao Bin, Hong Feng, Wang Kai, Xu Jinting, Zhao Liwei, Fan Jing. Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching[J]. Journal of Computer Research and Development, 2019, 56(4): 866-883. DOI: 10.7544/issn1000-1239.2019.20180035
Citation: Cao Bin, Hong Feng, Wang Kai, Xu Jinting, Zhao Liwei, Fan Jing. Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching[J]. Journal of Computer Research and Development, 2019, 56(4): 866-883. DOI: 10.7544/issn1000-1239.2019.20180035

Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching

More Information
  • Published Date: March 31, 2019
  • Due to the congested road and the increasing cost of private car, more and more people are willing to choose carpooling for travel. Although there are a lot of algorithms for ride sharing research, there is no algorithm to consider this problem from a global view. Plan all the matching routes from the global view and make all drivers’ detour distances minimize, which not only can reduce air pollution, but also can ease the traffic pressure. This paper presents an efficient large-scale matching method for many to many ride sharing algorithm, called Uroad, to make up for the shortcomings of existing algorithms. Uroad allows the rider to request a ride service which includes the periods of departure time when he gets ready to start off and the maximum cost of the ride-sharing he is willing to pay for this service. At the same time, Uroad allows the driver to set the departure time to indicate when he will set out and the arrival time that he must reach to his destination before. The same to the other Carpooling algorithms, Uroad calculates the fare based on the distance of rider’s trip and the detour caused by the rider. According to the requirements of riders and drivers, Uroad supports the global optimal matching among multiple riders and drivers, matches a driver who can meet the requirements to each rider as far as possible, and minimizes the total detour of all the drivers to reach the goal of environmental protection and reducing the traffic pressure. Uroad uses a series of time pruning techniques and Euclidean distance pruning techniques to reduce the calculation of the shortest path which can make the overall algorithm more quick and efficient. The experiments show that it is less than 2 minutes for Uroad to find the optimal combination of ride-sharing for 1 000 riders in 100 000 drivers, which is 40% shorter than the direct calculation of the shortest path. Compared with the random selection of drivers, the total detours of all drivers can be reduced by about 60% with the global optimization strategy.
  • Related Articles

    [1]Bai Ting, Liu Xuanning, Wu Bin, Zhang Zibin, Xu Zhiyuan, Lin Kangyi. Multi-Granularity Based Feature Interaction Pruning Model for CTR Prediction[J]. Journal of Computer Research and Development, 2024, 61(5): 1290-1298. DOI: 10.7544/issn1000-1239.202220943
    [2]Sun Yan, Ji Weifeng, Weng Jiang, Zhao Beiying. Optimal Strategy of Moving Target Defense Based on Differential Game[J]. Journal of Computer Research and Development, 2021, 58(8): 1789-1800. DOI: 10.7544/issn1000-1239.2021.20200524
    [3]Guo Yuhan, Zhang Yu, Shen Xueli, Yu Junyu. Multi-Strategy Solution Space Graph Search Algorithm of Real-Time Ride-Sharing Problem[J]. Journal of Computer Research and Development, 2020, 57(6): 1269-1283. DOI: 10.7544/issn1000-1239.2020.20190484
    [4]Chen Puqiang, Guo Lijun, Zhang Rong, Zhao Jieyu. Patch Matching with Global Spatial Constraints for Person Re-Identification[J]. Journal of Computer Research and Development, 2015, 52(3): 596-605. DOI: 10.7544/issn1000-1239.2015.20131481
    [5]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [6]Wen Renqiang, Zhong Shaobo, Yuan Hongyong, Huang Quanyi. Emergency Resource Multi-Objective Optimization Scheduling Model and Multi-Colony Ant Optimization Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1464-1472.
    [7]Zhang Jianbo, Liu Jiping, Wang Bei. Spatial Information Services Chaining Based on Graphic-Workflow[J]. Journal of Computer Research and Development, 2012, 49(6): 1357-1362.
    [8]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [9]Chen Kunjie, Sun Weiwei, Zhu Liang, and Liu Weimo. An Adaptive Page-Replacement Strategy for Spatial Database Systems[J]. Journal of Computer Research and Development, 2011, 48(10): 1927-1934.
    [10]Yang Xiaowei, Lu Jie, Zhang Guangquan. An Effective Pruning Algorithm for Least Squares Support Vector Machine Classifier[J]. Journal of Computer Research and Development, 2007, 44(7): 1128-1136.
  • Cited by

    Periodical cited type(20)

    1. 韦修喜,彭茂松,黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化. 计算机应用. 2024(04): 1009-1017 .
    2. 刘超敏,胡玉平. 基于VGG—19和卡尔曼预处理的WSNs测距方法. 传感器与微系统. 2023(10): 139-142 .
    3. 刘松旭,张大鹏,乌云娜,刘鹏. 基于RSSI模型的无线传感器网络定位算法. 计算机仿真. 2022(01): 427-431 .
    4. 崔焕庆,张娜,罗汉江. 基于改进鸽群算法的无线传感器网络定位方法. 传感技术学报. 2022(03): 399-404 .
    5. 陈岩 ,高振国 ,王海军 ,欧阳云 ,缑锦 . 隐私保护能力可调的节点定位协议. 计算机研究与发展. 2022(09): 2075-2088 . 本站查看
    6. 刘琳岚,肖庭忠,舒坚,牛明晓. 基于门控循环单元的链路质量预测. 工程科学与技术. 2022(06): 51-58 .
    7. 赵高丽,宋军平. 水下传感器网络自组织连通恢复仿真. 计算机仿真. 2021(03): 152-156 .
    8. 刘恒,钟俊,刘辉. 基于优化核极限学习的WSN网络汇聚节点故障诊断. 新乡学院学报. 2021(06): 28-32 .
    9. 石秦峰,徐祥涛,杨晓东. 基于节点汇聚链路模型的光纤传感器物联网节点控制. 激光杂志. 2021(07): 109-113 .
    10. 张晶,罗施章,付谱平. 基于虚拟力移动锚节点的3D-DVHop-ACR定位算法. 控制与决策. 2021(10): 2409-2417 .
    11. 张盛安,周洋,方浩,孙玉洁. 贵州电网贵阳供电局网络资源敏捷定位关键问题设计. 电力大数据. 2021(05): 79-85 .
    12. 王礼霞,邰清清. 基于高阶马尔可夫链的无线传感器网络异常节点检测. 黑龙江工业学院学报(综合版). 2021(08): 93-97 .
    13. 宰红斌,刘建国,唐保国,马建国,上官明霞,单荣荣. 基于WSN的输电线路状态监测与数据采集跨层优化方法. 电气工程学报. 2021(03): 161-169 .
    14. 郑岚. 多信道通信网络环境下基于节点组簇技术通信资源调度算法. 山西能源学院学报. 2021(05): 97-99 .
    15. 徐逸夫,段隆振. 基于蛙跳算法的无线传感器网络节点重部署. 计算机仿真. 2021(10): 328-332 .
    16. 宋亚磊. 基于虚拟引力约束的光纤传感器网络节点空洞智能修复算法研究. 传感技术学报. 2021(10): 1395-1400 .
    17. 易柏言. 关于无线传感器网络的时间同步技术探究. 科技创新与应用. 2020(15): 152-153 .
    18. 王林,刘盼. 基于卷积神经网络的行人目标检测系统设计. 计算机测量与控制. 2020(07): 64-68+96 .
    19. 左伟伟. 基于微积分算子的网络节点发包概率分布研究. 电子设计工程. 2020(23): 116-119+124 .
    20. 李庐,赵晓峰. 基于拓扑感知映射算法的传感器网络数据稳定传输方法. 湖南科技学院学报. 2020(05): 54-57 .

    Other cited types(6)

Catalog

    Article views (2339) PDF downloads (579) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return