• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cao Bin, Hong Feng, Wang Kai, Xu Jinting, Zhao Liwei, Fan Jing. Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching[J]. Journal of Computer Research and Development, 2019, 56(4): 866-883. DOI: 10.7544/issn1000-1239.2019.20180035
Citation: Cao Bin, Hong Feng, Wang Kai, Xu Jinting, Zhao Liwei, Fan Jing. Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching[J]. Journal of Computer Research and Development, 2019, 56(4): 866-883. DOI: 10.7544/issn1000-1239.2019.20180035

Uroad:An Efficient Method for Large-Scale Many to Many Ride Sharing Matching

More Information
  • Published Date: March 31, 2019
  • Due to the congested road and the increasing cost of private car, more and more people are willing to choose carpooling for travel. Although there are a lot of algorithms for ride sharing research, there is no algorithm to consider this problem from a global view. Plan all the matching routes from the global view and make all drivers’ detour distances minimize, which not only can reduce air pollution, but also can ease the traffic pressure. This paper presents an efficient large-scale matching method for many to many ride sharing algorithm, called Uroad, to make up for the shortcomings of existing algorithms. Uroad allows the rider to request a ride service which includes the periods of departure time when he gets ready to start off and the maximum cost of the ride-sharing he is willing to pay for this service. At the same time, Uroad allows the driver to set the departure time to indicate when he will set out and the arrival time that he must reach to his destination before. The same to the other Carpooling algorithms, Uroad calculates the fare based on the distance of rider’s trip and the detour caused by the rider. According to the requirements of riders and drivers, Uroad supports the global optimal matching among multiple riders and drivers, matches a driver who can meet the requirements to each rider as far as possible, and minimizes the total detour of all the drivers to reach the goal of environmental protection and reducing the traffic pressure. Uroad uses a series of time pruning techniques and Euclidean distance pruning techniques to reduce the calculation of the shortest path which can make the overall algorithm more quick and efficient. The experiments show that it is less than 2 minutes for Uroad to find the optimal combination of ride-sharing for 1 000 riders in 100 000 drivers, which is 40% shorter than the direct calculation of the shortest path. Compared with the random selection of drivers, the total detours of all drivers can be reduced by about 60% with the global optimization strategy.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (2344) PDF downloads (580) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return