• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Bicheng, Gu Haifeng, Chen Mingsong, Gu Shouzhen, Chen Wenjie. An Efficient Processing In Memory Framework Based on Skyrmion Material[J]. Journal of Computer Research and Development, 2019, 56(4): 798-809. DOI: 10.7544/issn1000-1239.2019.20180157
Citation: Liu Bicheng, Gu Haifeng, Chen Mingsong, Gu Shouzhen, Chen Wenjie. An Efficient Processing In Memory Framework Based on Skyrmion Material[J]. Journal of Computer Research and Development, 2019, 56(4): 798-809. DOI: 10.7544/issn1000-1239.2019.20180157

An Efficient Processing In Memory Framework Based on Skyrmion Material

More Information
  • Published Date: March 31, 2019
  • As a new computing paradigm, processing in memory (PIM) allows the parallel computation in both processors and memories, which drastically reduce the movements between computation units and storage units. Therefore, PIM can be considered as an efficient technology to somewhat address the shortcomings of the von neumann architecture. Compared with traditional random access memories, racetrack memory has many merits including high density, non-volatility, and low static power. Therefore, it can be used for efficient PIM computing. To address the shortages of domain-wall based PIM, this paper proposes a novel PIM framework based on the Skyrmion material. In this framework, we use Skyrmion-based racetrack memories to construct storage units, and use Skyrmion-based logic gates to compose both adders and multipliers for the computation units. Since our framework does not need CMOS (complementary metal oxide semiconductor) circuits to assist the underlying computation unit construction, the design complexity is significantly reduced. Meanwhile, based on our proposed optimization methods for read and write operations at the circuit layer and address mapping mode of the memory at the system level, the performance of our framework is drastically improved. Experimental results show that compared with domain-wall based PIM framework, our approach can achieve 48.1% time improvement and 42.9% energy savings on average.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1241) PDF downloads (484) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return