• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ai Ke, Ma Guoshuai, Yang Kaikai, Qian Yuhua. A Classification Method of Scientific Collaborator Potential Prediction Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1383-1395. DOI: 10.7544/issn1000-1239.2019.20180641
Citation: Ai Ke, Ma Guoshuai, Yang Kaikai, Qian Yuhua. A Classification Method of Scientific Collaborator Potential Prediction Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1383-1395. DOI: 10.7544/issn1000-1239.2019.20180641

A Classification Method of Scientific Collaborator Potential Prediction Based on Ensemble Learning

More Information
  • Published Date: June 30, 2019
  • Scientific cooperation is a very important form of academic achievement. Many high-level researches are achieved through cooperation. Researching the collaboration potential can provide guidance for scholars to choose collaborators and maximize the efficiency of scientific research. However, the current outbursts of big data have hindered the effective choice of collaborators. In order to solve the problem, based on scholar-paper big data, after features analysis and optimization and comprehensively considering individual attributes and related attributes of scholars' papers, institutions, research interests, etc., sample features from various dimensions such as paper title, paper rank, paper number, time and coauthor order are constructed. Taking journal or conference level of papers as the sample tags of collaborators sequence pairs, which indicates the potential of current cooperators and make use of the strong learning characteristics of the ensemble methods, a scientific collaborator potential prediction model based on ensemble learning classification method is proposed. After analyzing and constructing the feature set that corresponds to the problem of scientific collaborator potential prediction, classification method is adopted to solve the problem. In experiments, the accuracy, recall rate, and F1 score are much higher than those of traditional machine learning methods and can converge to high values (above 80%) with few samples and little time, indicating the superiority of the proposed model.
  • Related Articles

    [1]Chen Haipeng, Shen Xuanjing, Long Jianwu. Threshold Optimization Framework of Global Thresholding Algorithms Using Gaussian Fitting[J]. Journal of Computer Research and Development, 2016, 53(4): 892-903. DOI: 10.7544/issn1000-1239.2016.20140508
    [2]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [3]Qian Manli, Li Yonghui, Huang Yi, Zhou Yiqing, Shi Jinglin, Yang Xuezhi. An Adaptive Soft Frequency Reuse Scheme for LTE Systems[J]. Journal of Computer Research and Development, 2013, 50(5): 912-920.
    [4]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [5]Lei Shaohua, Han Yinhe, and Li Xiaowei. Soft Error Rate Analysis for Combinational Logic Using Frequency Method[J]. Journal of Computer Research and Development, 2011, 48(3): 535-544.
    [6]Sun Yan, Zhang Minxuan, Li Shaoqing, and Gao Changlei. Optimizing Soft Error Rate and Overhead of Circuits Based on Sensitive Registers Replacement[J]. Journal of Computer Research and Development, 2011, 48(1): 28-35.
    [7]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [8]Zou Yan, Lu Peizhong, and Zhu Xueling. A Novel Algorithm of Soft Fast Correlation Attack and Applications[J]. Journal of Computer Research and Development, 2007, 44(4): 581-588.
    [9]Huang Hailin, Tang Zhimin, Xu Tong. Fault Injection and Soft Error Sensitivity Characterization for Fault-Tolerant Godson-1 Processor[J]. Journal of Computer Research and Development, 2006, 43(10): 1820-1827.
    [10]Wang Fangshi, Xu De, and Wu Weixin. A Cluster Algorithm of Automatic Key Frame Extraction Based on Adaptive Threshold[J]. Journal of Computer Research and Development, 2005, 42(10): 1752-1757.
  • Cited by

    Periodical cited type(3)

    1. 甘臣权,付祥,冯庆东,祝清意. 基于公共情感特征压缩与融合的轻量级图文情感分析模型. 计算机研究与发展. 2023(05): 1099-1110 . 本站查看
    2. 朱明航,柳欣,于镇宁,徐行,郑书凯. 基于双向伪标签自监督学习的跨人脸-语音匹配方法. 计算机研究与发展. 2023(11): 2638-2649 . 本站查看
    3. 柳欣,王锐,钟必能,王楠楠. 结合双流网络和双向五元组损失的跨人脸-语音匹配. 计算机研究与发展. 2022(03): 694-705 . 本站查看

    Other cited types(6)

Catalog

    Article views (1073) PDF downloads (420) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return