• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Shunyong, Zhang Miaomiao, Cao Fuyuan. A MD fuzzy k-modes Algorithm for Clustering Categorical Matrix-Object Data[J]. Journal of Computer Research and Development, 2019, 56(6): 1325-1337. DOI: 10.7544/issn1000-1239.2019.20180737
Citation: Li Shunyong, Zhang Miaomiao, Cao Fuyuan. A MD fuzzy k-modes Algorithm for Clustering Categorical Matrix-Object Data[J]. Journal of Computer Research and Development, 2019, 56(6): 1325-1337. DOI: 10.7544/issn1000-1239.2019.20180737

A MD fuzzy k-modes Algorithm for Clustering Categorical Matrix-Object Data

Funds: This work was supported by the National Natural Science Foundation of China (61573229), the Shanxi Provincial Basic Research Foundation of China (201701D121004), the Shanxi Scholarship Council of China (2017-020), and the Shanxi Provincial Teaching Reform and Innovation Program in Higher Education (J2017002).
More Information
  • Published Date: May 31, 2019
  • Traditional algorithms generally cluster single-valued attributed data. However, in practice, each attribute of the data object is described by more than one feature vector. For example, customers may purchase multiple products at the same time as they shop. An object described by multiple feature vectors is called a matrix object and such data are called matrix-object data. At present, the research work on clustering algorithms for categorical matrix- object data is relatively rare, and there are still many issues to be settled. In this paper, we propose a new matrix-object data fuzzy k-modes (MD fuzzy k-modes) algorithm that uses the fuzzy k-modes clustering process to cluster categorical matrix-object data. In the proposed algorithm, we introduce the fuzzy factor β with the concept of fuzzy set. The dissimilarity measure between two categorical matrix-objects is redefined, and the heuristic updating algorithm of the cluster centers is provided. Finally, the effectiveness of the MD fuzzy k-modes algorithm is verified on the five real-world data sets, and the relationship between fuzzy factor β and membership w is analyzed. Therefore, in the era of big data, clustering multiple records by using the MD fuzzy k-modes algorithm can make it easier to find customers’ spending habits and preferences, so as to make more targeted recommendation.
  • Related Articles

    [1]Chen Yewang, Shen Lianlian, Zhong Caiming, Wang Tian, Chen Yi, Du Jixiang. Survey on Density Peak Clustering Algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394. DOI: 10.7544/issn1000-1239.2020.20190104
    [2]Hong Min, Jia Caiyan, Li Yafang, Yu Jian. Sample-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2019, 56(8): 1677-1685. DOI: 10.7544/issn1000-1239.2019.20190150
    [3]Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467
    [4]Gong Shufeng, Zhang Yanfeng. EDDPC: An Efficient Distributed Density Peaks Clustering Algorithm[J]. Journal of Computer Research and Development, 2016, 53(6): 1400-1409. DOI: 10.7544/issn1000-1239.2016.20150616
    [5]Zhao Xingwang, Liang Jiye. An Attribute Weighted Clustering Algorithm for Mixed Data Based on Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(5): 1018-1028. DOI: 10.7544/issn1000-1239.2016.20150131
    [6]Yang Xinxin, Huang Shaobin. A Hierarchical Co-Clustering Algorithm for High-Order Heterogeneous Data[J]. Journal of Computer Research and Development, 2015, 52(1): 200-210. DOI: 10.7544/issn1000-1239.2015.20130493
    [7]Liang Jiye, Bai Liang, Cao Fuyuan. K-Modes Clustering Algorithm Based on a New Distance Measure[J]. Journal of Computer Research and Development, 2010, 47(10): 1749-1755.
    [8]Zhang Hongyi, Zhang Junying, Zhao Feng. Extraction of Discriminant Features Based on Optimal Transformation and Cluster Centers of Kernel Space[J]. Journal of Computer Research and Development, 2008, 45(12): 2138-2144.
    [9]Zhang Gang, Liu Yue, Guo Jiafeng, and Cheng Xueqi. A Hierarchical Search Result Clustering Method[J]. Journal of Computer Research and Development, 2008, 45(3): 542-547.
    [10]Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.
  • Cited by

    Periodical cited type(10)

    1. 李顺勇,余曼,王改变. Fuzzy BC-k-modes:一种分类矩阵对象数据的聚类算法. 计算机应用与软件. 2023(01): 287-297 .
    2. 龚芝,马凌,刘敏,何先波. 融合知识图谱的文本聚类方法研究. 南京理工大学学报. 2022(02): 170-176 .
    3. 李洁,许青,张露露,王英明. 基于网格耦合的混合属性大数据聚类算法研究. 信息工程大学学报. 2022(02): 218-223 .
    4. 王雪蓉,万年红. 云模式事件混沌关联特征提取的物联网大数据聚类算法. 计算机应用研究. 2021(02): 391-397 .
    5. 邱保志,王志林. 基于熵的混合属性聚类算法. 计算机工程与设计. 2021(04): 957-962 .
    6. 陈艺,江芝蒙,张渝. 云系统中基于同态哈希认证的大数据安全传输. 计算机工程与设计. 2021(05): 1250-1256 .
    7. 张春英,高瑞艳,王佳昊,陈松,刘凤春,任静,冯晓泽. 面向不完备分类型矩阵数据的集对k-modes聚类算法. 小型微型计算机系统. 2021(09): 1837-1844 .
    8. 郑颖,张伟,靳新,于千贺. 基于Fuzzy ART聚类的卫星在轨姿态监测系统设计. 计算机测量与控制. 2021(12): 17-21 .
    9. 费丹雄,严思唯,芦金雨,周文哲,范正权. 基于混合高斯模型的用电量计量数据聚类算法研究. 电子设计工程. 2020(20): 106-110 .
    10. 钟耀霞,程建斌,项正山. 传感网络局部离群数据动态聚类算法仿真. 计算机仿真. 2020(11): 312-315+421 .

    Other cited types(11)

Catalog

    Article views (879) PDF downloads (366) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return