• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Gao Tengfei, Liu Yongyan, Tang Yunbo, Zhang Lei, Chen Dan. A Massively Parallel Bayesian Approach to Factorization-Based Analysis of Big Time Series Data[J]. Journal of Computer Research and Development, 2019, 56(7): 1567-1577. DOI: 10.7544/issn1000-1239.2019.20180792
Citation: Gao Tengfei, Liu Yongyan, Tang Yunbo, Zhang Lei, Chen Dan. A Massively Parallel Bayesian Approach to Factorization-Based Analysis of Big Time Series Data[J]. Journal of Computer Research and Development, 2019, 56(7): 1567-1577. DOI: 10.7544/issn1000-1239.2019.20180792

A Massively Parallel Bayesian Approach to Factorization-Based Analysis of Big Time Series Data

More Information
  • Published Date: June 30, 2019
  • Big time series data record the evolvement of a complex system(s) in large temporal and spatial scales with great details of the interactions amongst different parts of the system. Extracting the latent low-dimensional factors plays a crucial role in examining the overall mechanism of the underlying complex system(s). Research challenges arise with the lack of a priori knowledge, and most conventional factorization methods are not able to adapt to the ultra-high dimension and scales of the big data. Aiming at the grand challenge, this study develops a massively parallel Bayesian approach (G-BF) to factorization-based analysis of tensors formed by massive time series. The approach relies on a Bayesian algorithm to derive the factor matrices in the absence of a priori information. Then the algorithm has been mapped to the compute unified device architecture (CUDA) model to update the factor matrices in a massively parallel manner. The proposed approach is designed to support factorization of tensors of arbitrary dimensions. Experimental results indicated that 1) In comparison with GPU-hierarchical alternative least square (G-HALS), G-BF exhibits much better runtime performance and the superiority becomes more obvious with the increasing data scale; 2)G-BF has excellent scalability in terms of both data volume and rank; 3)Applying G-BF to the existing framework for fusing sub-factors (hierarchical-parallel factor analysis,H-PARAFAC), it becomes possible to factorize a huge tensor (volume up to 10\+{11} over two nodes) as a whole with the capability two magnitudes higher than conventional methods.
  • Related Articles

    [1]Chen Haipeng, Shen Xuanjing, Long Jianwu. Threshold Optimization Framework of Global Thresholding Algorithms Using Gaussian Fitting[J]. Journal of Computer Research and Development, 2016, 53(4): 892-903. DOI: 10.7544/issn1000-1239.2016.20140508
    [2]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [3]Qian Manli, Li Yonghui, Huang Yi, Zhou Yiqing, Shi Jinglin, Yang Xuezhi. An Adaptive Soft Frequency Reuse Scheme for LTE Systems[J]. Journal of Computer Research and Development, 2013, 50(5): 912-920.
    [4]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [5]Lei Shaohua, Han Yinhe, and Li Xiaowei. Soft Error Rate Analysis for Combinational Logic Using Frequency Method[J]. Journal of Computer Research and Development, 2011, 48(3): 535-544.
    [6]Sun Yan, Zhang Minxuan, Li Shaoqing, and Gao Changlei. Optimizing Soft Error Rate and Overhead of Circuits Based on Sensitive Registers Replacement[J]. Journal of Computer Research and Development, 2011, 48(1): 28-35.
    [7]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [8]Zou Yan, Lu Peizhong, and Zhu Xueling. A Novel Algorithm of Soft Fast Correlation Attack and Applications[J]. Journal of Computer Research and Development, 2007, 44(4): 581-588.
    [9]Huang Hailin, Tang Zhimin, Xu Tong. Fault Injection and Soft Error Sensitivity Characterization for Fault-Tolerant Godson-1 Processor[J]. Journal of Computer Research and Development, 2006, 43(10): 1820-1827.
    [10]Wang Fangshi, Xu De, and Wu Weixin. A Cluster Algorithm of Automatic Key Frame Extraction Based on Adaptive Threshold[J]. Journal of Computer Research and Development, 2005, 42(10): 1752-1757.
  • Cited by

    Periodical cited type(3)

    1. 甘臣权,付祥,冯庆东,祝清意. 基于公共情感特征压缩与融合的轻量级图文情感分析模型. 计算机研究与发展. 2023(05): 1099-1110 . 本站查看
    2. 朱明航,柳欣,于镇宁,徐行,郑书凯. 基于双向伪标签自监督学习的跨人脸-语音匹配方法. 计算机研究与发展. 2023(11): 2638-2649 . 本站查看
    3. 柳欣,王锐,钟必能,王楠楠. 结合双流网络和双向五元组损失的跨人脸-语音匹配. 计算机研究与发展. 2022(03): 694-705 . 本站查看

    Other cited types(6)

Catalog

    Article views (1230) PDF downloads (391) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return