• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jin Tao, Zhang Dengyi, Cai Bo. The Autonomous Safe Landing Area Determination Method and Obstacle Avoidance Strategy[J]. Journal of Computer Research and Development, 2019, 56(12): 2649-2659. DOI: 10.7544/issn1000-1239.2019.20190218
Citation: Jin Tao, Zhang Dengyi, Cai Bo. The Autonomous Safe Landing Area Determination Method and Obstacle Avoidance Strategy[J]. Journal of Computer Research and Development, 2019, 56(12): 2649-2659. DOI: 10.7544/issn1000-1239.2019.20190218

The Autonomous Safe Landing Area Determination Method and Obstacle Avoidance Strategy

More Information
  • Published Date: November 30, 2019
  • The autonomous detection technology of lunar surface obstacles and the selection of safe landing sites are the key to realize the safe landing of the probe on the lunar surface. The autonomous safe landing of lunar exploration power descent phase is simulated, and a simulation algorithm for autonomous safe landing of spacecraft based on simulation is proposed. Firstly, the lunar region captured by the CCD camera carried by the detector is determined, and the lunar remote sensing image is simulated based on ray tracing algorithm and elevation data. Then, based on edge detection, obstacles such as rocks and craters on the target surface of the detector are obtained, and these obstacles are fitted elliptically to determine the obstacle area. On the basis of determining obstacle areas, using morphological operation of images, the remote sensing images of each layer of the moon are acquired by using the Gauss image pyramid, and the multi-frame images are processed in real time to determine the safe landing area accurately. In the stage of obstacle avoidance after the landing area is basically determined, a spiral search strategy for obstacle avoidance of detector based on three-dimensional reconstruction is proposed. On the basis of traditional image matching recognition, the algorithm firstly reconstructs the lunar landing area with high precision according to the laser three-dimensional imager carried by the detector, and then searches the reconstructed area spirally to select a more precise and safer landing site for the soft landing target. Finally, the effectiveness of the proposed algorithm is verified by simulation experiments.
  • Related Articles

    [1]Wen Yimin, Yuan Zhe, Yu Hang. A New Semi-Supervised Inductive Transfer Learning Framework: Co-Transfer[J]. Journal of Computer Research and Development, 2023, 60(7): 1603-1614. DOI: 10.7544/issn1000-1239.202220232
    [2]Ma Xinyu, Fan Yixing, Guo Jiafeng, Zhang Ruqing, Su Lixin, Cheng Xueqi. An Empirical Investigation of Generalization and Transfer in Short Text Matching[J]. Journal of Computer Research and Development, 2022, 59(1): 118-126. DOI: 10.7544/issn1000-1239.20200626
    [3]Weng Zejia, Chen Jingjing, Jiang Yugang. On the Generalization of Face Forgery Detection with Domain Adversarial Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1476-1489. DOI: 10.7544/issn1000-1239.2021.20200803
    [4]Sun Xiaoyi, Liu Huafeng, Jing Liping, Yu Jian. Deep Generative Recommendation Based on List-Wise Ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497
    [5]Zhuo Junbao, Su Chi, Wang Shuhui, Huang Qingming. Min-Entropy Transfer Adversarial Hashing[J]. Journal of Computer Research and Development, 2020, 57(4): 888-896. DOI: 10.7544/issn1000-1239.2020.20190476
    [6]Wang Ruiqin, Wu Zongda, Jiang Yunliang, Lou Jungang. An Integrated Recommendation Model Based on Two-stage Deep Learning[J]. Journal of Computer Research and Development, 2019, 56(8): 1661-1669. DOI: 10.7544/issn1000-1239.2019.20190178
    [7]Wen Yimin, Tang Shiqi, Feng Chao, Gao Kai. Online Transfer Learning for Mining Recurring Concept in Data Stream Classification[J]. Journal of Computer Research and Development, 2016, 53(8): 1781-1791. DOI: 10.7544/issn1000-1239.2016.20160223
    [8]Wei Wenhong, Wang Jiahai, Tao Ming, Yuan Huaqiang. Multi-Objective Constrained Differential Evolution Using Generalized Opposition-Based Learning[J]. Journal of Computer Research and Development, 2016, 53(6): 1410-1421. DOI: 10.7544/issn1000-1239.2016.20150806
    [9]Hong Jiaming, Yin Jian, Huang Yun, Liu Yubao, and Wang Jiahai. TrSVM: A Transfer Learning Algorithm Using Domain Similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 1823-1830.
    [10]Mei Canhua, Zhang Yuhong, Hu Xuegang, and Li Peipei. A Weighted Algorithm of Inductive Transfer Learning Based on Maximum Entropy Model[J]. Journal of Computer Research and Development, 2011, 48(9): 1722-1728.
  • Cited by

    Periodical cited type(14)

    1. 廖涛,沈文龙,张顺香,马文祥. 基于对抗训练的事件要素识别方法. 计算机工程与设计. 2024(02): 540-545 .
    2. 冯钧,畅阳红,陆佳民,唐海麟,吕志鹏,邱钰淳. 基于大语言模型的水工程调度知识图谱的构建与应用. 计算机科学与探索. 2024(06): 1637-1647 .
    3. 林海香,白万胜,赵正祥,胡娜娜,李冬,陆人杰. 面向高速铁路道岔运维文本的知识抽取方法. 铁道科学与工程学报. 2024(07): 2569-2580 .
    4. 刘文亮,吴飞,何德明,赵维伟,潘建宏. 基于相异度矩阵的碎片化回复文本聚类方法. 计算机与现代化. 2024(09): 56-60 .
    5. 乔勇鹏 ,于亚新 ,刘树越 ,王子腾 ,夏子芳 ,乔佳琪 . 图卷积增强多路解码的实体关系联合抽取模型. 计算机研究与发展. 2023(01): 153-166 . 本站查看
    6. 杨延云,杜建强,聂斌,罗计根,贺佳. 融合数据增强和注意力机制的中医实体及关系联合抽取. 智能计算机与应用. 2023(08): 186-191+196 .
    7. 王哲,谢玮. 基于改进CycleGan模型的动画视频CDS仿真. 计算机仿真. 2022(01): 195-199 .
    8. 魏晓,王晓鑫,陈永琪,张惠然. 基于自然语言处理的材料领域知识图谱构建方法. 上海大学学报(自然科学版). 2022(03): 386-398 .
    9. 董哲,王亚,马传孝,李志军. 融合对抗训练和胶囊网络的食品安全关系抽取模型. 科学技术与工程. 2022(23): 10162-10168 .
    10. 吴玉,付雪峰,王涛. 基于改进级联二元标记框架的关系抽取方法. 南昌工程学院学报. 2022(06): 86-90+111 .
    11. 何俊,刘鹏,聂勇,吴慎珂,刘鹏政,钟可佳. 基于Seq2seq实体关系联合抽取的电力知识图谱构建. 实验室研究与探索. 2022(07): 1-5+17 .
    12. 田佳来,吕学强,游新冬,肖刚,韩君妹. 基于分层序列标注的实体关系联合抽取方法. 北京大学学报(自然科学版). 2021(01): 53-60 .
    13. 付雷杰,曹岩,白瑀,冷杰武. 国内垂直领域知识图谱发展现状与展望. 计算机应用研究. 2021(11): 3201-3214 .
    14. 张军莲,张一帆,汪鸣泉,黄永健. 基于图卷积神经网络的中文实体关系联合抽取. 计算机工程. 2021(12): 103-111 .

    Other cited types(19)

Catalog

    Article views (745) PDF downloads (223) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return