• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Sun Xiaoyi, Liu Huafeng, Jing Liping, Yu Jian. Deep Generative Recommendation Based on List-Wise Ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497
Citation: Sun Xiaoyi, Liu Huafeng, Jing Liping, Yu Jian. Deep Generative Recommendation Based on List-Wise Ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497

Deep Generative Recommendation Based on List-Wise Ranking

Funds: This work was supported by the National Natural Science Foundation of China (61822601, 61773050, 61632004), the Beijing Natural Science Foundation (Z180006), the Program of Beijing Municipal Science & Technology Commission (Z181100008918012), the National Key Research and Development Program of China (2017YFC1703506), and the Fundamental Research Funds for the Central Universities (2019JBZ110).
More Information
  • Published Date: July 31, 2020
  • Variational autoencoders have been successfully applied in recommendation field in recent years. The advantage of this kind of nonlinear probabilistic model is that it can break through the limited modeling ability of linear model, which is still dominant in collaborative filtering research. Although the recommendation method based on variational autoencoder has achieved excellent performance, there are still some unresolved problems, such as the inability to generate personalized recommendation ranking lists for users based on the recommendation data of implicit feedback. Therefore, in this paper, we propose a depth generation recommendation model for variational autoencoder by using polynomial likelihood to implement list-based ranking strategies. The model has the ability to simultaneously generate point-wise implicit feedback data and create a list-like ranking list for each user. To seamlessly combine ranking loss with variational autoencoder loss, the normalized cumulative loss gain (NDCG) is adopted here and approximated with a smoothed function. A series of experiments on three real-world datasets (MovieLens-100k, XuetangX and Jester) have been conducted. Experimental results show that the variational autoencoder combined with list-wise ranking method has better performance in generate a personalized recommendation list.
  • Related Articles

    [1]Wang Yiting, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Unbiased Learning to Rank Based on Relevance Correction[J]. Journal of Computer Research and Development, 2022, 59(12): 2867-2877. DOI: 10.7544/issn1000-1239.20210865
    [2]Qin Tao, Shen Zhuang, Liu Huan, Chen Zhouguo. Learning to Rank for Evolution Trend Evaluation of Online Public Opinion Events[J]. Journal of Computer Research and Development, 2020, 57(12): 2490-2500. DOI: 10.7544/issn1000-1239.2020.20200725
    [3]Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
    [4]Zhong Qi, Wang Jing, Guan Xuetao, Huang Tao, Wang Keyi. Data Object Scale Aware Rank-Level Memory Allocation[J]. Journal of Computer Research and Development, 2014, 51(3): 672-680.
    [5]Li Guilin, Yang Yuqi, Gao Xing, and Liao Minghong. Personalized Representation and Rank Algorithm for Enterprise Search Engines[J]. Journal of Computer Research and Development, 2014, 51(1): 206-214.
    [6]Hua Guichun, Zhang Min, Liu Yiqun, Ma Shaoping, and Ru Liyun. Query Clustering Based on Query Requirements for Ranking[J]. Journal of Computer Research and Development, 2012, 49(11): 2407-2413.
    [7]Lu Min, Huang Yalou, Xie Maoqiang, Wang Yang, Liu Jie, Liao Zhen. Cost-Sensitive Listwise Ranking Approach[J]. Journal of Computer Research and Development, 2012, 49(8): 1738-1746.
    [8]Peng Zewu, Tang Yong, Luo Haixia, Pan Yan. Supervised and Transductive Ranking Algorithms with Relational Objects[J]. Journal of Computer Research and Development, 2012, 49(6): 1256-1263.
    [9]Zhang Zhiqiang, Song Weitao, Xie Xiaoqin. An Efficient Ontology Ranking Algorithm—MIDSRank[J]. Journal of Computer Research and Development, 2011, 48(6): 1077-1088.
    [10]Wang Yang, Huang Yalou, Xie Maoqiang, Liu Jie, Lu Min, Liao Zhen. A Multiple Query Dependent Ranking SVM Aggregation Algorithm[J]. Journal of Computer Research and Development, 2011, 48(4): 558-566.
  • Cited by

    Periodical cited type(7)

    1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
    2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 .
    3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 .
    4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 .
    5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 .
    6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 .
    7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 .

    Other cited types(3)

Catalog

    Article views (921) PDF downloads (422) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return