• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Xuehua, Ding Liping, Liu Wenmao, Zheng Tao, Li Yanfeng, Wu Jingzheng. A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis[J]. Journal of Computer Research and Development, 2019, 56(10): 2262-2276. DOI: 10.7544/issn1000-1239.2019.20190394
Citation: Liu Xuehua, Ding Liping, Liu Wenmao, Zheng Tao, Li Yanfeng, Wu Jingzheng. A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis[J]. Journal of Computer Research and Development, 2019, 56(10): 2262-2276. DOI: 10.7544/issn1000-1239.2019.20190394

A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis

More Information
  • Published Date: September 30, 2019
  • With the development and popularization of cloud computing, the security situation of cloud computing environment is getting worse. Cloud forensics is of great significance for safeguarding the cloud computing security. The current cloud forensics technology research is at an early stage, and cloud forensics is faced with problems such as lack of digital evidence integrity, high forensics overhead and low intelligence. Therefore, an intelligent cloud forensics method based on SDS (software defined security) and cloud forensics trend analysis is proposed to mitigate some of these problems. Firstly, a cloud forensics architecture based on software defined security is proposed to realize collaborative real-time forensics between cloud network and cloud computing platform. Secondly, a cloud forensics trend analysis algorithm based on the HMM (hidden Markov model) is proposed to realize intelligent forensics strategy decision-making and forensics resource scheduling in the cloud forensics architecture. The experimental results show that, compared with the separate network forensics method and cloud computing platform forensics method, the forensics capacity of this method increases to 91.6%, and the forensics overhead of this method is in between, achieving a better effect between forensics capability and forensics overhead. This method has some referential significance for cloud service providers to provide cloud forensics service.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return