• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Hongzhang, Yang Yahui, Tu Yaofeng, Sun Guangyu, Wu Zhonghai. Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism[J]. Journal of Computer Research and Development, 2020, 57(2): 306-317. DOI: 10.7544/issn1000-1239.2020.20190549
Citation: Yang Hongzhang, Yang Yahui, Tu Yaofeng, Sun Guangyu, Wu Zhonghai. Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism[J]. Journal of Computer Research and Development, 2020, 57(2): 306-317. DOI: 10.7544/issn1000-1239.2020.20190549

Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1003302), the National Natural Science Foundation of China(61672062), and the Jiangsu Provincial Program of Industrial & Information Industry Transformation (2018GX02517).
More Information
  • Published Date: January 31, 2020
  • Hard disk fault has become the main source of failure in data centers, which seriously affects the reliability of data. The traditional data fault tolerant technology is usually realized by increasing data redundancy, which has some shortcomings. Proactive fault tolerant technology has become a research hotspot, because it can predict hard disk failures and migrate data ahead of time. However, the existing technology mostly studies hard disk fault prediction, but lacks the research of collection, migration and feedback, which causes difficulty in commercialize. This paper proposes a whole process proactive fault tolerant on “Collection—Prediction—Migration—Feedback” mechanism, which includes time-sharing hard disk information collection method, sliding window record merging and sample building method, multi-type hard disk fault prediction method, multi-disk joint data migration method, and two-level validation of prediction results with fast feedback method. The test results show that the impact of collecting hard disk information on front-end thread is only 0.96%, the recall rate of hard disk fault prediction is 94.66%, and data repair time is 55.10% less than traditional methods. This work has been used stably in ZTE’s data center, which meets the objectives of proactive fault tolerance technology, such as high-reliability, high-intelligence, low-interference, low-cost and wide-application.
  • Related Articles

    [1]Guo Doudou, Xu Weihua. R-FCCL: An Approach of Fuzzy-Based Concept-Cognitive Learning with Robustness for High-Dimensional Data[J]. Journal of Computer Research and Development, 2025, 62(2): 383-396. DOI: 10.7544/issn1000-1239.202330428
    [2]Wang Qi, Li Deyu, Zhai Yanhui, Zhang Shaoxia. Parameterized Fuzzy Decision Implication[J]. Journal of Computer Research and Development, 2022, 59(9): 2066-2074. DOI: 10.7544/issn1000-1239.20210539
    [3]Wang Xia, Jiang Shan, Li Junyu, Wu Weizh. A Construction Method of Triadic Concepts[J]. Journal of Computer Research and Development, 2019, 56(4): 844-853. DOI: 10.7544/issn1000-1239.2019.20180315
    [4]Zou Li, Feng Kaihua, Liu Xin. Linguistic-Valued Intuitionistic Fuzzy Concept Lattice and Its Application[J]. Journal of Computer Research and Development, 2018, 55(8): 1726-1734. DOI: 10.7544/issn1000-1239.2018.20180240
    [5]Zhang Lei, Zhang Hongli, Yin Lihua, Han Daojun. Theory and Algorithms of Attribute Decrement for Concept Lattice[J]. Journal of Computer Research and Development, 2013, 50(2): 248-259.
    [6]Shi Zhibin and Huang Houkuan. Reductive Data Cube Based on Formal Concept Analysis[J]. Journal of Computer Research and Development, 2009, 46(11): 1956-1962.
    [7]Xu Jiaqing, Peng Xin, and Zhao Wenyun. Program Clustering for Comprehension Based on Fuzzy Formal Concept Analysis[J]. Journal of Computer Research and Development, 2009, 46(9): 1556-1566.
    [8]Yang Bin and Xu Baowen. Distributive Reduction of Attributes in Concept Lattice[J]. Journal of Computer Research and Development, 2008, 45(7).
    [9]Wang Liming and Zhang Zhuo. An Algorithm for Mining Closed Frequent Itemsets Based on Apposition Assembly of Iceberg Concept Lattices[J]. Journal of Computer Research and Development, 2007, 44(7): 1184-1190.
    [10]Wang Haixia and Han Chengde. Formal Method Research on Integer Multiplier Verification[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(16)

    1. 郭豆豆,徐伟华. R-FCCL:一种面向高维数据的稳健模糊概念认知学习方法. 计算机研究与发展. 2025(02): 383-396 . 本站查看
    2. 王太滨,李德玉,翟岩慧. 基于证据理论的多粒度决策背景最优粒度选取方法. 山西大学学报(自然科学版). 2024(04): 737-750 .
    3. 张家录,吴霞. 形式背景上近似推理生成决策蕴涵研究. 自动化学报. 2024(11): 2286-2300 .
    4. 李腾,李德玉,翟岩慧,张少霞. 介粒度空间中的最优粒度选择和属性约简. 计算机科学. 2023(10): 71-79 .
    5. 李金海,贺建君. 多粒度形式背景的不确定性度量与最优粒度选择. 控制与决策. 2022(05): 1299-1308 .
    6. 李金海,邓小媛,智慧来. 多粒度实值形式概念分析. 陕西师范大学学报(自然科学版). 2022(03): 52-64 .
    7. 李金海,周新然. 多粒度决策形式背景的属性约简. 模式识别与人工智能. 2022(05): 387-400 .
    8. 王琪,李德玉,翟岩慧,张少霞. 含参模糊决策蕴涵. 计算机研究与发展. 2022(09): 2066-2074 . 本站查看
    9. 李金海,王飞,吴伟志,徐伟华,杨习贝,折延宏. 基于粒计算的多粒度数据分析方法综述. 数据采集与处理. 2021(03): 418-435 .
    10. 薛占熬,孙冰心,侯昊东,荆萌萌. 基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法. 计算机科学. 2021(10): 98-106 .
    11. 智慧来,李逸楠. 形式概念分析中的面向对象概念约简. 海南热带海洋学院学报. 2021(05): 66-71 .
    12. 汪秋分,卞洪亚. 决策形式背景的双向决策规则研究. 数学的实践与认识. 2021(21): 198-206 .
    13. 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化. 山东大学学报(理学版). 2020(05): 1-12 .
    14. 李金海,闫梦宇,徐伟华,折延宏,张文修. 概念认知学习的若干问题与思考. 西北大学学报(自然科学版). 2020(04): 501-515 .
    15. 李金海,魏玲,张卓,翟岩慧,张涛,智慧来,米允龙. 概念格理论与方法及其研究展望. 模式识别与人工智能. 2020(07): 619-642 .
    16. 温馨,闫心怡,陈泽华. 中心概念及其在规则提取中的应用. 计算机科学与探索. 2020(11): 1967-1974 .

    Other cited types(21)

Catalog

    Article views (1294) PDF downloads (497) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return