• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670
Citation: Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670

AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO

Funds: This work was supported by the National Natural Science Foundation of China (61432018, 61521092, 61272136, 61521092, 61502450), the National Key Research and Development Program of China (2016YFB0200803), and the Beijing Natural Science Foundation (L1802053).
More Information
  • Published Date: November 30, 2020
  • Current machine learning models require numbers of hyperparameters. Adjusting those hyperparameters is an exhausting job. Thus, hyperparameters optimization algorithms play important roles in machine learning application. In hyperparameters optimization algorithms, sequential model-based optimization algorithms (SMBO) and parallel SMBO algorithms are state-of-the-art hyperpara-meter optimization methods. However, (parallel) SMBO algorithms do not take the best hyperpara-meters high possibility range and gradients into considerasion. It is obvious that best hyperparameters high possibility range and hyperparameter gradients can accelerate traditional hyperparameters optimization algorithms. In this paper, we accelerate the traditional SMBO method and name our method as AccSMBO. In AccSMBO, we build a novel gradient-based multikernel Gaussian process. Our multikernel Gaussian process has a good generalization ability which reduces the gradient noise influence on SMBO algorithm. And we also design meta-acquisition function and parallel resource allocation plan which encourage that (parallel) SMBO puts more attention on the best hyperpara-meters high possibility range. In theory, our method ensures that all hyperparameter gradient information and the best hyperparameters high possibility range information are fully used. In L2 norm regularised logistic loss function experiments, on different scales datasets: small-scale dataset Pc4, middle-scale dataset Rcv1, large-scale dataset Real-sim, compared with state-of-the-art gradient based algorithm: HOAG and state-of-the-art SMBO algorithm: SMAC, our method exhibits the best performance.
  • Related Articles

    [1]Xu Jingnan, Wang Leixia, Meng Xiaofeng. Research on Privacy Auditing in Data Governance[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202540530
    [2]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [3]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [4]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [5]Liu Qiang, Li Tong, Yu Yang, Cai Zhiping, Zhou Tongqing. Data Security and Privacy Preserving Techniques for Wearable Devices: A Survey[J]. Journal of Computer Research and Development, 2018, 55(1): 14-29. DOI: 10.7544/issn1000-1239.2018.20160765
    [6]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [7]Cao Zhenfu, Dong Xiaolei, Zhou Jun, Shen Jiachen, Ning Jianting, Gong Junqing. Research Advances on Big Data Security and Privacy Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. DOI: 10.7544/issn1000-1239.2016.20160684
    [8]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Zhang Fengzhe, Chen Jin, Chen Haibo, and Zang Binyu. Lifetime Privacy and Self-Destruction of Data in the Cloud[J]. Journal of Computer Research and Development, 2011, 48(7): 1155-1167.
  • Cited by

    Periodical cited type(5)

    1. 李宁,徐丽娜,方国勇,马英晋. 结合容错编码的量子化学分布式计算. 化学学报. 2024(02): 138-145 .
    2. 陈雨梁,林夕,李建华. 基于编码计算的分布式人工智能系统安全防护研究. 网络空间安全. 2024(01): 108-112 .
    3. 郭中孚,季新生,游伟,赵宇,巩小锐. 基于喷泉码的隐私保护编码计算卸载方法. 信息工程大学学报. 2024(05): 559-566 .
    4. 杨在航,李跃鹏,曾德泽. 基于编码计算的边端融合计算发展趋势. 自动化博览. 2023(02): 45-49 .
    5. 史洪玮,洪道诚,施连敏,杨迎尧. 异构编码联邦学习. 华东师范大学学报(自然科学版). 2023(05): 110-121 .

    Other cited types(5)

Catalog

    Article views (858) PDF downloads (301) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return