• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Junfeng, Wang Yanbiao. Causal-Pdh: Causal Consistency Model for NoSQL Distributed Data Storage Using HashGraph[J]. Journal of Computer Research and Development, 2020, 57(12): 2703-2716. DOI: 10.7544/issn1000-1239.2020.20190686
Citation: Tian Junfeng, Wang Yanbiao. Causal-Pdh: Causal Consistency Model for NoSQL Distributed Data Storage Using HashGraph[J]. Journal of Computer Research and Development, 2020, 57(12): 2703-2716. DOI: 10.7544/issn1000-1239.2020.20190686

Causal-Pdh: Causal Consistency Model for NoSQL Distributed Data Storage Using HashGraph

Funds: This work was supported by the National Natural Science Foundation of China for Young Scientists (61802106).
More Information
  • Published Date: November 30, 2020
  • The causal consistency of data in a distributed environment means that when data with causal dependence is updated, the dependency metadata in other distributed copies must be updated simultaneously, while meeting higher availability and performance requirements. To solve the problem of users put latency and updating visible latency in existing results, based on the data center stable vectors, combined with the principle of hybrid logical clocks and the HashGraph, we propose the Causal-Pdh model. To reduce the communication overhead caused by exchanging data between replicates, partial stabel vectors required by synchronizing data and Hash value as the message signatures are used instead of the whole data center stable vectors. The principle of virtual voting in HashGraph is used to improve the process of synchronizing the latest entries in each data center. Just like Gossip about Gossip: each parent node also randomly exchanges the latest status, and updates the clock regularly. This progress reduces the time of virtual voting between the replicates. Finally, it is verified by experiments that the Causal-Pdh model not only doesnt affect the throughput of the client query, but also reduces the wait latency of users put operation by 20.85% when the clock skew is severe. When the query is amplified in the system, the response time of request is reduced by 23.37%.
  • Cited by

    Periodical cited type(15)

    1. 邓可望,赵娟,肖振中,师少光,朱亮. 基于多光谱和面部多区域联合的人脸活体检测算法. 集成技术. 2024(01): 72-81 .
    2. 祁春阳,黄杰,赵翔宇,汪周红. 云边协同的轻量级网络结构人脸识别方法. 东南大学学报(自然科学版). 2023(01): 1-13 .
    3. 谢晓华 ,卞锦堂 ,赖剑煌 . 人脸活体检测综述. 中国图象图形学报. 2022(01): 63-87 .
    4. 陈晋音,吴长安,郑海斌. 基于softmax激活变换的对抗防御方法. 网络与信息安全学报. 2022(02): 48-63 .
    5. 封筠,董祉怡,刘甜甜,韩超群,胡晶晶. 融合DQ_CoALBP和LPQ算子的人脸活体检测. 计算机工程与应用. 2022(14): 134-143 .
    6. 伊力哈木·亚尔买买提,张伟. 一种新的人脸面部表情识别算法研究. 电子器件. 2021(03): 616-623 .
    7. 马思源,郑涵,郭文. 应用深度光学应变特征图的人脸活体检测. 中国图象图形学报. 2020(03): 618-628 .
    8. 颜健. 基于特征融合与支持向量机的人脸活体检测技术. 数字技术与应用. 2020(05): 46-47 .
    9. 束鑫,唐慧,杨习贝,宋晓宁,吴小俊. 基于差分量化局部二值模式的人脸反欺诈算法研究. 计算机研究与发展. 2020(07): 1508-1521 . 本站查看
    10. 黄俊,张娜娜,章惠. 融合头部姿态和面部表情的互动式活体检测. 计算机应用. 2020(07): 2089-2095 .
    11. 唐慧,束鑫,杨习贝,李玥. 基于分块彩色MB_-LBP纹理的人脸反欺诈算法. 江苏科技大学学报(自然科学版). 2020(03): 48-53 .
    12. 吴启群,宋晓宁. 联合多通道特征与最小二乘决策的人脸反欺诈方法. 计算机应用研究. 2020(09): 2847-2850 .
    13. 施新岚,黄俊,黄洋,许二敏. 基于Gabor纹理增强的人脸活体检测算法. 重庆邮电大学学报(自然科学版). 2020(06): 1023-1030 .
    14. 田中可,陈成军,李东年,赵正旭. 基于PX-LBP和像素分类的装配体零件识别研究. 机电工程. 2019(03): 236-243 .
    15. 刘伟,章琬苓,项世军. 基于LBP-MDCT和CNN的人脸活体检测算法. 应用科学学报. 2019(05): 609-617 .

    Other cited types(22)

Catalog

    Article views (690) PDF downloads (272) Cited by(37)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return