• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
Citation: Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113

Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (61662002, 61972293, 61902189), the Project of Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology (JELRGBDT201905), the Natural Science Foundation of Jiangsu Province(BK20180821).
More Information
  • Published Date: May 31, 2020
  • With the development of process technology and the improvement of architecture, the parallel computing performance of GPGPU(general purpose graphics processing units) is updated a lot, which makes GPGPU applied more and more widely in the fields of high performance and high throughput. GPGPU can obtain high parallel computing performance, as it can hide the long latency incurred by the memory accesses via supporting thousands of concurrent threads. Due to the existance of irregular computation and memory access in some applications, the performance of the memory subsystem is affected a lot, especially the contention of the on-chip cache can become serious, and the performance of GPGPU can not be up to the maximum. Alleviating the contention and optimizing the performance of the on-chip cache have become one of the main solutions to the optimization of GPGPU. At present, the studies of the performance optimization of the on-chip cache focus on five aspects, including TLP(thread level parallelism) throttling, memory access reordering, data flux enhancement, LLC(last level cache) optimization, and new architecture design based on NVM(non-volatile memory). This paper mainly discusses the performance optimization research methods of the on-chip cache from these aspects. In the end, some interesting research fields of the on-chip cache optimization in future are discussed. The contents of this paper have important significance on the research of the cache subsystem in GPGPU.
  • Related Articles

    [1]Zhang Wenhan, Liu Xiaoming, Yang Guan, Liu Jie. Cross-Domain Named Entity Recognition of Multi-Level Structured Semantic Knowledge Enhancement[J]. Journal of Computer Research and Development, 2023, 60(12): 2864-2876. DOI: 10.7544/issn1000-1239.202220413
    [2]Feng Jun, Shi Yichen, Gao Yuhao, He Jingjing, Yu Zitong. Domain Adaptation for Face Anti-Spoofing Based on Dual Disentanglement and Liveness Feature Progressive Alignment[J]. Journal of Computer Research and Development, 2023, 60(8): 1727-1739. DOI: 10.7544/issn1000-1239.202330251
    [3]Jia Xibin, Zeng Meng, Mi Qing, Hu Yongli. Domain Alignment Adversarial Unsupervised Cross-Domain Text Sentiment Analysis Algorithm[J]. Journal of Computer Research and Development, 2022, 59(6): 1255-1270. DOI: 10.7544/issn1000-1239.20210039
    [4]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [5]Yang Dan, Shen Derong, Nie Tiezheng, Yu Ge, Kou Yue. Entity Association Mining Algorithm CFRQ4A in Heterogeneous Information Spaces[J]. Journal of Computer Research and Development, 2014, 51(4): 895-904.
    [6]Wu Qiong, Liu Yue, Shen Huawei, Zhang Jin, Xu Hongbo, and Cheng Xueqi. A Unified Framework for Cross-Domain Sentiment Classification[J]. Journal of Computer Research and Development, 2013, 50(8): 1683-1689.
    [7]Liu Shenglan, Feng Lin, Jin Bo, Wu Zhenyu. A New Local Space Alignment Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1426-1434.
    [8]Li Peng, Wang Ruchuan, Wu Ning. Research on Unknown Malicious Code Automatic Detection Based on Space Relevance Features[J]. Journal of Computer Research and Development, 2012, 49(5): 949-957.
    [9]Yu Yaxin, Wang Guoren, Lin Lizeng, Li Miao, and Zhu Xinhua. M/+2+-Tree: Processing Multiple Metric Space Queries of Medical Cases Efficiently with Just One Index[J]. Journal of Computer Research and Development, 2010, 47(4): 671-678.
    [10]Li Yuqin and Zhao Wenyun. A Feature Oriented Approach to Mapping from Domain Requirements to Product Line Architecture[J]. Journal of Computer Research and Development, 2007, 44(7): 1236-1242.

Catalog

    Article views (1016) PDF downloads (497) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return