• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Du Guowang, Zhou Lihua, Wang Lizhen, Du Jingwei. Multi-View Clustering Based on Two-Level Weights[J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. DOI: 10.7544/issn1000-1239.20200897
Citation: Du Guowang, Zhou Lihua, Wang Lizhen, Du Jingwei. Multi-View Clustering Based on Two-Level Weights[J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. DOI: 10.7544/issn1000-1239.20200897

Multi-View Clustering Based on Two-Level Weights

Funds: This work was supported by the National Natural Science Foundation of China (62062066, 61762090, 61966036), Yunnan Fundamental Research Projects in 2022, the Project of the University Key Laboratory of Internet of Things Technology and Application of Yunnan Province, the National Social Science Foundation of China (18XZZ005), the Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN), and the Scientific Research Fund Project of Yunnan Provincial Department of Education (2021Y026).
More Information
  • Published Date: March 31, 2022
  • In the process of clustering, the high-dimensionality and sparsity of multi-view data make the different features of samples described in a view have different effects on the clustering results, and each sample has different contributions to the clustering in different views. Hierarchically distinguishing the weights of different features in one view and the weights of the same sample in different views is an important factor to improve the quality of multi-view clustering. In this paper, we propose a multi-view clustering algorithm based on two-level weights, i.e. feature-level and sample-level weights. The proposed algorithm is named MVC2W, which learns the weights of different features in each view and the weights of each sample in different views by introducing a feature-level and a sample-level attention mechanism. The introduction of the two-level attention mechanism allows the algorithm to pay more attention to important features and important samples during the training process, and to integrate information from different views in a more rational way, thereby alleviating effectively the effects induced by high-dimensionality and sparsity on clustering quality. In addition, MVC2W integrates the process of representation learning and clustering into a unified framework for collaborative training and mutual promotion, so as to further improve the clustering performance. The experimental results on 5 datasets with different degrees of sparseness show that MVC2W algorithm outperforms 11 baseline algorithms, especially in the datasets with high degree of sparseness, and the improvement of clustering performance obtained by MVC2W is more significant.
  • Related Articles

    [1]Huang Ruoran, Cui Li, Han Chuanqi. Feature-Over-Field Interaction Factorization Machine for Sparse Contextualized Prediction in Recommender Systems[J]. Journal of Computer Research and Development, 2022, 59(7): 1553-1568. DOI: 10.7544/issn1000-1239.20210031
    [2]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [3]Liu Haolin, Chi Jinlong, Deng Qingyong, Peng Xin, Pei Tingrui. Multi-Objective Evolutionary Sparse Recovery Approach Based on Adaptive Local Search[J]. Journal of Computer Research and Development, 2019, 56(7): 1420-1431. DOI: 10.7544/issn1000-1239.2019.20180557
    [4]Cheng Xiaoyang, Zhan Yongzhao, Mao Qirong, Zhan Zhicai. Video Semantic Analysis Based on Topographic Sparse Pre-Training CNN[J]. Journal of Computer Research and Development, 2018, 55(12): 2703-2714. DOI: 10.7544/issn1000-1239.2018.20170579
    [5]Gao Yunlong, Zuo Wanli, Wang Ying, Wang Xin. Sentence Classification Model Based on Sparse and Self-Taught Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(1): 179-187. DOI: 10.7544/issn1000-1239.2018.20160784
    [6]Zheng Jianwei, Yang Ping, Wang Wanliang, Bai Cong. Kernel Sparse Representation Classification with Group Weighted Constraints[J]. Journal of Computer Research and Development, 2016, 53(11): 2567-2582. DOI: 10.7544/issn1000-1239.2016.20150743
    [7]Hu Zhaohua, Yuan Xiaotong, Li Jun, He Jun. Robust Fragments-Based Tracking with Multi-Feature Joint Kernel Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(7): 1692-1704. DOI: 10.7544/issn1000-1239.2015.20140152
    [8]Dou Nuo, Zhao Ruizhen, Cen Yigang, Hu Shaohai, Zhang Yongdong. Noisy Image Super-Resolution Reconstruction Based on Sparse Representation[J]. Journal of Computer Research and Development, 2015, 52(4): 943-951. DOI: 10.7544/issn1000-1239.2015.20140047
    [9]Zhang Lunkai, Song Fenglong, Wang Da, Fan Dongrui, Sun Ninghui. Improving the Performance of Sparse Directories[J]. Journal of Computer Research and Development, 2014, 51(9): 1955-1970. DOI: 10.7544/issn1000-1239.2014.20131173
    [10]Huang Kui, Wu Yichuan, Zheng Jianping, Wu Zhimei. Forwarding State Reduction Scheme Based on Interface Format for Sparse Mode Multicast[J]. Journal of Computer Research and Development, 2005, 42(9): 1564-1570.
  • Cited by

    Periodical cited type(2)

    1. 朱云华,孔兵,周丽华,陈红梅,包崇明. 图对比学习引导的多视图聚类网络. 计算机应用. 2024(10): 3267-3274 .
    2. 刘超,孔兵,杜国王,周丽华,陈红梅,包崇明. 高阶互信息最大化与伪标签指导的深度聚类. 浙江大学学报(工学版). 2023(02): 299-309 .

    Other cited types(1)

Catalog

    Article views (215) PDF downloads (125) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return