• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hu Xiaoyan, Tong Zhongq, Xu Ke, Zhang Guoqiang, Zheng Shaoqi, Zhao Lixia, Cheng Guang, Gong Jian. Video Delivery over Named Data Networking: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 116-136. DOI: 10.7544/issn1000-1239.2021.20190697
Citation: Hu Xiaoyan, Tong Zhongq, Xu Ke, Zhang Guoqiang, Zheng Shaoqi, Zhao Lixia, Cheng Guang, Gong Jian. Video Delivery over Named Data Networking: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 116-136. DOI: 10.7544/issn1000-1239.2021.20190697

Video Delivery over Named Data Networking: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (61602114, 61772279), the National Key Research and Development Program of China (2017YFB0801703, 2018YFB1800602), the CERNET Innovation Project (NGII20170406), and the Zhishan Youth Scholar Program of SEU.
More Information
  • Published Date: December 31, 2020
  • The Internet has developed into a network dominated by content delivery services such as delivering live and on-demand videos. There are some problems in traditional IP network in terms of supporting video delivery, such as the complexity and high overhead of the deployment of multicast, the disability to effectively utilize multipath transmission, the poor support for mobility and so on. Named data networking (NDN), a promising future Internet architecture, intrinsically supports in-network caching and multipath transmission. Consumers actively use interest message to request data packet from producer, and this consumer-driven communication model enables NDN to naturally support the mobility of consumers. These features offer the potential for NDN to efficiently deliver videos. This paper first introduces the background of video delivery and NDN, and then elaborates some schemes that take the advantages of NDN to deliver video: firstly, how do the strategies in NDN improve video bit rate; secondly, how do the strategies in NDN improve video playback stability; thirdly, how do the strategies in NDN protect video copyright and privacy; finally, how do the strategies in NDN transfer new types of video. According to the analysis of these existing schemes and the comparison of their performance over IP and NDN, the challenges of delivering videos over NDN are finally pointed out.
  • Related Articles

    [1]Cai Huan, Lu Kezhong, Wu Qirong, Wu Dingming. Adaptive Classification Algorithm for Concept Drift Data Stream[J]. Journal of Computer Research and Development, 2022, 59(3): 633-646. DOI: 10.7544/issn1000-1239.20201017
    [2]Guo Jiang, Wang Miao, Zhang Yujun. Content Type Based Jumping Probability Caching Mechanism in NDN[J]. Journal of Computer Research and Development, 2021, 58(5): 1118-1128. DOI: 10.7544/issn1000-1239.2021.20190871
    [3]Wu Zhijun, Zhang Rudan, Yue Meng. A Method for Joint Detection of Attacks in Named Data Networking[J]. Journal of Computer Research and Development, 2021, 58(3): 569-582. DOI: 10.7544/issn1000-1239.2021.20200448
    [4]Wu Hua, Wang Ling, Cheng Guang. Optimization of TCP Congestion Control Algorithm in Dynamic Adaptive Streaming over HTTP[J]. Journal of Computer Research and Development, 2019, 56(9): 1965-1976. DOI: 10.7544/issn1000-1239.2019.20180752
    [5]Wu Yingjie, Zhang Liqun, Kang Jian, Wang Yilei. An Algorithm for Differential Privacy Streaming Data Adaptive Publication[J]. Journal of Computer Research and Development, 2017, 54(12): 2805-2817. DOI: 10.7544/issn1000-1239.2017.20160555
    [6]Xue Kaiping, Chen Ke, Ni Dan, Zhang Hong, Hong Peilin. Survey of MPTCP-Based Multipath Transmission Optimization[J]. Journal of Computer Research and Development, 2016, 53(11): 2512-2529. DOI: 10.7544/issn1000-1239.2016.20150589
    [7]Huang Sheng, Teng Mingnian, Wu Zhen, Xu Jianghua, Ji Ruijun. A Data Caching Scheme Based on Node Classification in Named Data Networking[J]. Journal of Computer Research and Development, 2016, 53(6): 1281-1291. DOI: 10.7544/issn1000-1239.2016.20148097
    [8]Liu Zhuo, Yang Yue, Zhang Jianpei, Yang Jing, Chu Yan, Zhang Zebao. An Adaptive Grid-Density Based Data Stream Clustering Algorithm Based on Uncertainty Model[J]. Journal of Computer Research and Development, 2014, 51(11): 2518-2527. DOI: 10.7544/issn1000-1239.2014.20130869
    [9]An Huiyao, Lu Xicheng, Peng Wei, Gong Zhenghu. A Cluster-Based Multipath Dynamic Source Routing in MANET[J]. Journal of Computer Research and Development, 2006, 43(3): 381-388.
    [10]Cai Qingsong, Li Zimu, Qin Shaohua, Hu Jianping. Dynamic Caching Techniques of Media Suffix in Streaming Content Delivery[J]. Journal of Computer Research and Development, 2005, 42(8): 1384-1390.
  • Cited by

    Periodical cited type(27)

    1. 顾敏,徐雅男,王辛迪,花敏,周雯. 多用户MIMO-MEC网络中基于APSO的任务卸载研究. 无线电工程. 2024(03): 711-718 .
    2. 王斐然,郭昕阳,张峰. 基于边缘计算的输电线路巡检设备协同调配研究. 自动化仪表. 2024(05): 123-126 .
    3. 史晓蒙,吕晓鹏,魏健康,王凌. 基于算法组合的端边云任务处理方法. 价值工程. 2024(36): 108-112 .
    4. 向朝参,程文辉,张昭,焦贤龙,屈毓锛,陈超,戴海鹏. 基于边缘智能计算的城市交通感知数据自适应恢复. 计算机研究与发展. 2023(03): 619-634 . 本站查看
    5. 邵梁,何星舟,尚俊娜. 边缘计算中利用改进型遗传算法的任务卸载策略. 计算机应用与软件. 2023(11): 48-57 .
    6. 高仕斌,刘帝洋,韦晓广,康高强,罗嘉明,雷杰宇. 基于数字孪生网络的牵引供电智能运维体系与应用架构. 铁道学报. 2023(12): 1-15 .
    7. 张彦虎,鄢丽娟,马志愤,张彦军. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法. 计算机与现代化. 2022(05): 54-60+67 .
    8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 .
    9. 张开强,蒋从锋,程小兰,贾刚勇,张纪林,万健. 多分辨率下资源感知的图像目标自适应缩放检测. 计算机科学. 2021(04): 180-186 .
    10. 乐光学,陈光鲁,卢敏,杨晓慧,刘建华,黄淳岚,杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法. 计算机研究与发展. 2021(09): 2025-2039 . 本站查看
    11. 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化. 计算机研究与发展. 2021(11): 2558-2570 . 本站查看
    12. 贾觐,暴占彪. 改进GA的边缘计算任务卸载与资源分配策略. 计算机工程与设计. 2021(11): 3009-3017 .
    13. 汪小威,林宁,胡玉平. 移动边缘计算中利用BPSO的任务卸载策略. 计算机工程与设计. 2021(12): 3333-3341 .
    14. 尹高,石远明. 移动边缘网络中深度学习任务卸载方案. 重庆邮电大学学报(自然科学版). 2020(01): 38-46 .
    15. 丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略. 微电子学与计算机. 2020(02): 63-68 .
    16. 白昱阳,黄彦浩,陈思远,张俊,李柏青,王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报. 2020(03): 397-410 .
    17. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
    18. 盛津芳,滕潇雨,李伟民,王斌. 移动边缘计算中基于改进拍卖模型的计算卸载策略. 计算机应用研究. 2020(06): 1688-1692 .
    19. 胡锦天,王高才,徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略. 计算机科学. 2020(06): 260-265 .
    20. 周振宇,陈亚鹏,潘超,赵雄文,张磊,汪中原. 面向智能电力巡检的高可靠低时延移动边缘计算技术. 高电压技术. 2020(06): 1895-1902 .
    21. 吕洁娜,张家波,张祖凡,甘臣权. 移动边缘计算卸载策略综述. 小型微型计算机系统. 2020(09): 1866-1877 .
    22. 张伟. 边缘计算的任务迁移机制研究. 软件导刊. 2020(09): 48-53 .
    23. 路亚. MEC多服务器启发式联合任务卸载和资源分配策略. 计算机应用与软件. 2020(10): 77-84 .
    24. 方加娟,李凯. 基于边缘云和移动辅助设备的计算卸载优化方案. 计算机应用与软件. 2020(12): 6-12 .
    25. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 .
    26. 居晓琴. 移动边缘计算的QoE视频缓存方法. 电脑与信息技术. 2019(05): 44-47 .
    27. 乐光学,戴亚盛,杨晓慧,朱友康,游真旭,刘建生. 边缘计算多约束可信协同任务迁移策略. 电信科学. 2019(11): 36-50 .

    Other cited types(66)

Catalog

    Article views (1076) PDF downloads (435) Cited by(93)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return