• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lai Qingkuan, Lü Fang, He Chunlin, He Xianbo, Feng Xiaobing. An Ideal Performance Oriented Approach for Cross-Framework Compiler Analysis[J]. Journal of Computer Research and Development, 2021, 58(3): 668-680. DOI: 10.7544/issn1000-1239.2021.20190728
Citation: Lai Qingkuan, Lü Fang, He Chunlin, He Xianbo, Feng Xiaobing. An Ideal Performance Oriented Approach for Cross-Framework Compiler Analysis[J]. Journal of Computer Research and Development, 2021, 58(3): 668-680. DOI: 10.7544/issn1000-1239.2021.20190728

An Ideal Performance Oriented Approach for Cross-Framework Compiler Analysis

Funds: This work was supported by the National Key Research and Development Program of China(2016YFB0200803), the CCF Research Fund Project of Tencent, the National Natural Science Foundation of China(61802368, 61521092, 61432016, 61432018, 61332009, 61702485, 61872043), the Talent Project of China West National University(17YC149), Nanchong City Major Scientific and Technological Achievement Conversion Project(18SXHZ0386), and the Ministry of Education Industry-University Cooperation Collaborative Education Project(201702049002).
More Information
  • Published Date: February 28, 2021
  • Compiler performance is the embodiment that computer system architecture makes full use of its advantages. Compiler optimization is influenced by the machine platform and compiler characteristics. Compiler analysis is carried out between the target compiler and the multiple reference compiler,  and the target platform and the multiple reference platform,  that is to say,  the combination of the compiler and the platform is the foundation of the analysis. Only in the circumstance of multiple combinations,  we can provide the maximum possibility of performance room for improvement and prioritization schemes in detail for the target compiler optimization. However,  adding to the combination of compiler and platform will add to the analysis amount of work which is unable to measure in most cases. For this purpose,  one kind of analytical technique in face of cross-platform and cross-compiler on the strength of the peak value architecture is put forward. On the strength of the peak value architecture set,  we structure the ideal performance space for the target compiler. In the combination of the advantage of fine grit,  we optimize the location technique,  and provide the optimization options with advantages and optimized direction for the target compiler,  so as to implement compiler optimization. In the end,  by means of experiments that we have carried out,  we verify the practical nature and pervasive nature of this analytical technique,  what is more,  we provide the optimized direction for the target compiler (gcc) on Intel platform.
  • Related Articles

    [1]Zhang Yang, Qiao Liu, Dong Chunhao, Gao Hongbin. Deep Learning Based Data Race Detection Approach[J]. Journal of Computer Research and Development, 2022, 59(9): 1914-1928. DOI: 10.7544/issn1000-1239.20220014
    [2]Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
    [3]Zhu Zhaokun, Li Jinbao. Multi-Feature Information Fusion LSTM-RNN Detection for OSA[J]. Journal of Computer Research and Development, 2020, 57(12): 2547-2555. DOI: 10.7544/issn1000-1239.2020.20190583
    [4]Hu Chaowen, Wu Changxing, Yang Yalian. Extended S-LSTM Based Textual Entailment Recognition[J]. Journal of Computer Research and Development, 2020, 57(7): 1481-1489. DOI: 10.7544/issn1000-1239.2020.20190522
    [5]Du Peng, Ding Shifei. A DGA Domain Name Detection Method Based on Deep Learning Models with Mixed Word Embedding[J]. Journal of Computer Research and Development, 2020, 57(2): 433-446. DOI: 10.7544/issn1000-1239.2020.20190160
    [6]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [7]Lin Xin, Tian Xin, Ji Yi, Xu Yunlong, Liu Chunping. Scene Graph Generation Based on Shuffle Residual Context Information[J]. Journal of Computer Research and Development, 2019, 56(8): 1721-1730. DOI: 10.7544/issn1000-1239.2019.20190329
    [8]Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
    [9]Liu He, Ji Yu, Han Jianhui, Zhang Youhui, Zheng Weimin. Training and Software Simulation for ReRAM-Based LSTM Neural Network Acceleration[J]. Journal of Computer Research and Development, 2019, 56(6): 1182-1191. DOI: 10.7544/issn1000-1239.2019.20190113
    [10]Cheng Xiaoyang, Zhan Yongzhao, Mao Qirong, Zhan Zhicai. Video Semantic Analysis Based on Topographic Sparse Pre-Training CNN[J]. Journal of Computer Research and Development, 2018, 55(12): 2703-2714. DOI: 10.7544/issn1000-1239.2018.20170579
  • Cited by

    Periodical cited type(12)

    1. 赵海鹏,容晓峰. 融合Transformer与1D-CNN的日志异常检测方法. 西安工业大学学报. 2025(01): 138-148 .
    2. 王圣凯,阮树骅,汪邓喆. 基于eBPF的云环境下payload进程检测方法. 计算机应用研究. 2023(07): 2157-2161 .
    3. 魏钧宇,张广艳,陈军超. 数据模式感知的低成本云日志存储系统. 计算机研究与发展. 2023(11): 2442-2452 . 本站查看
    4. 林国峰,詹伶俐,沈德仁. 空管自动化系统智能运维技术研究综述. 西华大学学报(自然科学版). 2022(02): 20-26 .
    5. 周建国,戴华,杨庚,周倩,王俊. 基于并列GRU分类模型的日志异常检测方法. 南京理工大学学报. 2022(02): 198-204 .
    6. 王蓓蓓,余晶鑫. 非侵入式空管自动化系统智能运维方法. 电子技术与软件工程. 2022(12): 193-197 .
    7. 何书前,孙学朝,蒋文娟,余绪杭. 一种改进的模糊聚类日志异常检测方法. 现代电子技术. 2022(16): 30-34 .
    8. 闫力,夏伟. 基于机器学习的日志异常检测综述. 计算机系统应用. 2022(09): 57-69 .
    9. 徐洁. 基于机器学习的日志异常检测设计. 电子技术与软件工程. 2022(24): 210-213 .
    10. 冯云,刘宝旭,张金莉,汪旭童,刘潮歌,申明喆,刘奇旭. 一种无监督的窃密攻击及时发现方法. 计算机研究与发展. 2021(05): 995-1005 . 本站查看
    11. 张颖,彭然. 基于改进蜻蜓优化多核模糊聚类算法的异常检测. 数学的实践与认识. 2021(19): 208-219 .
    12. 陈玮,黄维芳. 基于智能算法的电力交易数据中心通用数据调度方法. 自动化与仪器仪表. 2021(11): 131-133 .

    Other cited types(19)

Catalog

    Article views (576) PDF downloads (214) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return