• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Meng Ziyao, Gu Xue, Liang Yanchun, Xu Dong, Wu Chunguo. Deep Neural Architecture Search: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 22-33. DOI: 10.7544/issn1000-1239.2021.20190851
Citation: Meng Ziyao, Gu Xue, Liang Yanchun, Xu Dong, Wu Chunguo. Deep Neural Architecture Search: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 22-33. DOI: 10.7544/issn1000-1239.2021.20190851

Deep Neural Architecture Search: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (61972174, 61876069, 61876207), the Key Research and Development Project of Jilin Province (20180201045GX, 20180201067GX), the Natural Science Foundation of Jilin Province(20200201163JC), the Science and Technology Planning Project of Guangdong Province (2020A0505100018), the Guangdong Key-Project for Applied Fundamental Research (2018KZDXM076), and the Guangdong Premier Key-Discipline Enhancement Scheme (2016GDYSZDXK036).
More Information
  • Published Date: December 31, 2020
  • Deep learning has achieved excellent results on data tasks with multiple modalities such as images, speech, and text. However, designing networks manually for specific tasks is time-consuming and requires a certain level of expertise and design experience from the designer. In the face of today’s increasingly complex network architectures, relying on manual design alone increasingly becomes complex. For this reason, automatic architecture search of neural networks with the help of algorithms has become a hot research topic. The approach of neural architecture search involves three aspects: search space, search strategy, and performance evaluation strategy. The search strategy samples a network architecture in the search space, evaluates the network architecture by a performance evaluation strategy, and feed-back the results to the search strategy to guide it to select a better network architecture, and obtains the optimal network architecture through continuous iterations. In order to better sort out the methods of neural architecture search, we summarize the common methods in recent years from search space, search strategy and performance evaluation strategy, and analyze their strengths and weaknesses.
  • Related Articles

    [1]Ren Pengzhen, Liang Xiaodan, Chang Xiaojun, Zhao Ziying, Xiao Yun. Neural Architecture Search on Temporal Convolutions for Complex Action Recognition[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440048
    [2]Li Kai, Zeng Kun, Rong Peitao, Chen Zhiqiang, Zhang Tian, Wang Yongwen. FireLink: An Evaluation Framework for Chiplet Design Space Exploration[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440082
    [3]Guo Yuhan, Zhang Yu, Shen Xueli, Yu Junyu. Multi-Strategy Solution Space Graph Search Algorithm of Real-Time Ride-Sharing Problem[J]. Journal of Computer Research and Development, 2020, 57(6): 1269-1283. DOI: 10.7544/issn1000-1239.2020.20190484
    [4]Sun Qian, Xue Leiqi, Gao Ling, Wang Hai, Wang Yuxiang. Selection of Network Defense Strategies Based on Stochastic Game and Tabu Search[J]. Journal of Computer Research and Development, 2020, 57(4): 767-777. DOI: 10.7544/issn1000-1239.2020.20190870
    [5]Liu Yiqun. Satisfaction Prediction of Web Search Users[J]. Journal of Computer Research and Development, 2017, 54(6): 1133-1143. DOI: 10.7544/issn1000-1239.2017.20160804
    [6]Chen Zhiyu, Gao Dequan, Wang Dong, Li Guochun, Wei Xiaojing. Performance Evaluation of Power Quantum Secure Communication System for Energy Internet[J]. Journal of Computer Research and Development, 2017, 54(4): 711-719. DOI: 10.7544/issn1000-1239.2017.20161024
    [7]Han Jun, Fan Ju, Zhou Lizhu. Semantic-Enhanced Spatial Keyword Search[J]. Journal of Computer Research and Development, 2015, 52(9): 1954-1964. DOI: 10.7544/issn1000-1239.2015.20140686
    [8]Zhao Tiezhu, Dong Shoubin, Verdi March, Simon See. Predicting the Parallel File System Performance via Machine Learning[J]. Journal of Computer Research and Development, 2011, 48(7): 1202-1215.
    [9]Sun Xiangzheng, Zhang Yunquan, Wang Xuanqiang, Wang Lei. Research on the Evaluation Criterion for Performance Searching Process of Self-Adapting Numerical Software[J]. Journal of Computer Research and Development, 2010, 47(4): 679-686.
    [10]Peng Bo and Yan Hongfei. On Retrieval System Evaluation of Search Engines[J]. Journal of Computer Research and Development, 2005, 42(10): 1706-1711.
  • Cited by

    Periodical cited type(9)

    1. 陈彩华,佘程熙,王庆阳. 可信机器学习综述. 工业工程. 2024(02): 14-26 .
    2. 饶高琦,周立炜. 论语言智能的治理. 语言战略研究. 2024(03): 38-48 .
    3. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    4. 喻继军,熊明华. 电子商务推荐系统公平性研究进展. 现代信息科技. 2023(14): 115-124 .
    5. 范卓娅,孟小峰. 算法公平与公平计算. 计算机研究与发展. 2023(09): 2048-2066 . 本站查看
    6. 吴雷,杜文研,林超然. 基于专利数据应用LDA和N-BEATS组合方法的技术主题预测研究. 数字图书馆论坛. 2023(11): 62-73 .
    7. 古天龙,李龙,常亮,罗义琴. 公平机器学习:概念、分析与设计. 计算机学报. 2022(05): 1018-1051 .
    8. 王文鑫,张健毅. 联邦学习公平性研究综述. 北京电子科技学院学报. 2022(02): 122-134 .
    9. 郁建兴,刘宇轩. 社会治理中的深度学习算法公平性. 信息技术与管理应用. 2022(01): 17-27 .

    Other cited types(12)

Catalog

    Article views (2502) PDF downloads (1595) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return