• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
Citation: Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614

A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy

Funds: This work was supported by the National Natural Science Foundation of China (61632020) and the Special Project of Science and Technology Innovation Base of Key Laboratory of Software Engineering of Shandong Province (11480004042015).
More Information
  • Published Date: September 30, 2021
  • Dynamic Symmetric Searchable Encryption (DSSE) has become one of the most important primitives for data privacy protection in recent years. It allows clients to efficiently retrieve and update encrypted data stored in cloud servers. Only a small amount of strictly defined leakage is disclosed to the server, such as search pattern, access pattern, update pattern, and volume pattern. However, a growing number of studies have found that some powerful adversaries can exploit DSSE leakage to carry out specific attacks that undermine the privacy of data and retrieval. In the past, Private Information Retrieval, Oblivious Random Access Machine and storage padding are often used to compress or even eliminate the leaked information. These technologies can provide better security, but they are difficult to be applied because of the high complexity of computation, communication and storage. In order to achieve a better balance between safety and efficiency, this paper proposes the following ideas: We first introduce a meaningful security concept-differential privacy and propose a new padding method, differential privacy padding(DPP), which can reduce the storage load while ensuring the security. Then a Dynamic search update scheme called “MDSSE” is proposed in the multi-server mode. Through DPP apply to our scheme, volume, update and search pattern hiding are realized. The forward privacy and back privacy security are guaranteed at the same time. For the security proof of the scheme, we extend the definition of update history and propose a differential Update history DP-Update which is suitable for this scheme. Experimental results show that our scheme can resist leakage and abuse attacks, it also provides high storage and communication efficiency.
  • Related Articles

    [1]Xu Jingnan, Wang Leixia, Meng Xiaofeng. Research on Privacy Auditing in Data Governance[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202540530
    [2]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [3]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [4]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [5]Liu Qiang, Li Tong, Yu Yang, Cai Zhiping, Zhou Tongqing. Data Security and Privacy Preserving Techniques for Wearable Devices: A Survey[J]. Journal of Computer Research and Development, 2018, 55(1): 14-29. DOI: 10.7544/issn1000-1239.2018.20160765
    [6]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [7]Cao Zhenfu, Dong Xiaolei, Zhou Jun, Shen Jiachen, Ning Jianting, Gong Junqing. Research Advances on Big Data Security and Privacy Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. DOI: 10.7544/issn1000-1239.2016.20160684
    [8]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [9]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [10]Zhang Fengzhe, Chen Jin, Chen Haibo, and Zang Binyu. Lifetime Privacy and Self-Destruction of Data in the Cloud[J]. Journal of Computer Research and Development, 2011, 48(7): 1155-1167.
  • Cited by

    Periodical cited type(5)

    1. 李宁,徐丽娜,方国勇,马英晋. 结合容错编码的量子化学分布式计算. 化学学报. 2024(02): 138-145 .
    2. 陈雨梁,林夕,李建华. 基于编码计算的分布式人工智能系统安全防护研究. 网络空间安全. 2024(01): 108-112 .
    3. 郭中孚,季新生,游伟,赵宇,巩小锐. 基于喷泉码的隐私保护编码计算卸载方法. 信息工程大学学报. 2024(05): 559-566 .
    4. 杨在航,李跃鹏,曾德泽. 基于编码计算的边端融合计算发展趋势. 自动化博览. 2023(02): 45-49 .
    5. 史洪玮,洪道诚,施连敏,杨迎尧. 异构编码联邦学习. 华东师范大学学报(自然科学版). 2023(05): 110-121 .

    Other cited types(5)

Catalog

    Article views (678) PDF downloads (346) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return