• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Jiguo, Zhu Liufu, Liu Chengdong, Lu Yang, Han Jinguang, Wang Huaqun, Zhang Yichen. Provably Secure Traceable Attribute-Based Sanitizable Signature Scheme in the Standard Model[J]. Journal of Computer Research and Development, 2021, 58(10): 2253-2264. DOI: 10.7544/issn1000-1239.2021.20210669
Citation: Li Jiguo, Zhu Liufu, Liu Chengdong, Lu Yang, Han Jinguang, Wang Huaqun, Zhang Yichen. Provably Secure Traceable Attribute-Based Sanitizable Signature Scheme in the Standard Model[J]. Journal of Computer Research and Development, 2021, 58(10): 2253-2264. DOI: 10.7544/issn1000-1239.2021.20210669

Provably Secure Traceable Attribute-Based Sanitizable Signature Scheme in the Standard Model

Funds: This work was supported by the National Natural Science Foundation of China (62072104, 61972095, U1736112, 61972190, 61941116, 61772009) and the Natural Science Foundation of the Fujian Province of China (2020J01159).
More Information
  • Published Date: September 30, 2021
  • Since the concept of Attribute-Based Signature(ABS) was proposed, it has attracted wide attention due to its anonymity. ABS can hide the identity of signers to support anonymity, but anonymity may enable malicious signers to abuse signatures if the signatures are not traceable. At the same time, in specific application scenarios, such as e-medical treatment or e-commerce, some personal data(e.g. medical records, trade-transfer details, etc.) should be protected to prevent the leakage of private information. In order to hide sensitive information in data transmission and prevent malicious signers from abusing signatures, a traceable attribute-based sanitizable signature scheme is proposed. The security of the scheme is reduced to the Computational Diffie-Hellman(CDH) hard problem in the standard model. The scheme not only solves the problem of sensitive information hiding, guarantees the privacy of the signer, but also prevents the signer from abusing the signature.
  • Related Articles

    [1]Chen Zhenzhu, Zhou Chunyi, Su Mang, Gao Yansong, Fu Anmin. Research Progress of Secure Outsourced Computing for Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(7): 1450-1466. DOI: 10.7544/issn1000-1239.202220767
    [2]Jin Ge, Wei Xiaochao, Wei Senmao, Wang Hao. FPCBC: Federated Learning Privacy Preserving Classification System Based on Crowdsourcing Aggregation[J]. Journal of Computer Research and Development, 2022, 59(11): 2377-2394. DOI: 10.7544/issn1000-1239.20220528
    [3]Yan Yunxue, Ma Ming, Jiang Han. An Efficient Privacy Preserving 4PC Machine Learning Scheme Based on Secret Sharing[J]. Journal of Computer Research and Development, 2022, 59(10): 2338-2347. DOI: 10.7544/issn1000-1239.20220514
    [4]Zhao Xiufeng, Fu Yu, Song Weitao. Circular Secure Homomorphic Encryption Scheme[J]. Journal of Computer Research and Development, 2020, 57(10): 2117-2124. DOI: 10.7544/issn1000-1239.2020.20200422
    [5]Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]He Yingzhe, Hu Xingbo, He Jinwen, Meng Guozhu, Chen Kai. Privacy and Security Issues in Machine Learning Systems: A Survey[J]. Journal of Computer Research and Development, 2019, 56(10): 2049-2070. DOI: 10.7544/issn1000-1239.2019.20190437
    [8]Li Zengpeng, Ma Chunguang, Zhao Minghao. Leveled Fully Homomorphic Encryption Against Adaptive Key Recovery Attacks[J]. Journal of Computer Research and Development, 2019, 56(3): 496-507. DOI: 10.7544/issn1000-1239.2019.20170443
    [9]Xu Wenyu, Wu Lei, Yan Yunxue. Privacy-Preserving Scheme of Electronic Health Records Based on Blockchain and Homomorphic Encryption[J]. Journal of Computer Research and Development, 2018, 55(10): 2233-2243. DOI: 10.7544/issn1000-1239.2018.20180438
    [10]Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431
  • Cited by

    Periodical cited type(5)

    1. 李宁,徐丽娜,方国勇,马英晋. 结合容错编码的量子化学分布式计算. 化学学报. 2024(02): 138-145 .
    2. 陈雨梁,林夕,李建华. 基于编码计算的分布式人工智能系统安全防护研究. 网络空间安全. 2024(01): 108-112 .
    3. 郭中孚,季新生,游伟,赵宇,巩小锐. 基于喷泉码的隐私保护编码计算卸载方法. 信息工程大学学报. 2024(05): 559-566 .
    4. 杨在航,李跃鹏,曾德泽. 基于编码计算的边端融合计算发展趋势. 自动化博览. 2023(02): 45-49 .
    5. 史洪玮,洪道诚,施连敏,杨迎尧. 异构编码联邦学习. 华东师范大学学报(自然科学版). 2023(05): 110-121 .

    Other cited types(5)

Catalog

    Article views (637) PDF downloads (246) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return