Advanced Search
    Hua Yang, Li Jinxing, Feng Zhenhua, Song Xiaoning, Sun Jun, Yu Dongjun. Protein-Drug Interaction Prediction Based on Attention Feature Fusion[J]. Journal of Computer Research and Development, 2022, 59(9): 2051-2065. DOI: 10.7544/issn1000-1239.20210134
    Citation: Hua Yang, Li Jinxing, Feng Zhenhua, Song Xiaoning, Sun Jun, Yu Dongjun. Protein-Drug Interaction Prediction Based on Attention Feature Fusion[J]. Journal of Computer Research and Development, 2022, 59(9): 2051-2065. DOI: 10.7544/issn1000-1239.20210134

    Protein-Drug Interaction Prediction Based on Attention Feature Fusion

    • Drugs usually work by inhibiting or activating the active reactions of certain proteins in the human body, so the prediction of the interactions between proteins and drugs is very important for the screening of new drugs. However, it takes a lot of manpower and material resources to carry out this kind of wet experiment using traditional methods. To resolve this problem, we propose a protein-drug interaction prediction algorithm based on the self-attention mechanism and multi-drug feature fusion. Firstly, the Morgan fingerprint based on drug molecular structure characteristics, the Mol2Vec representation vector, and the features extracted by the messaging network are reasonably fused. Secondly, the fusion results are used to weigh the protein features extracted by dense convolution. After that, the self-attentional mechanism and bidirectional gating circulatory unit are used to predict protein-drug interactions by combining their characteristics. Finally, an applicable prediction system based on the training model is designed, which demonstrates the specific use cases and effects of the proposed method in drug screening for the Alzheimer disease. The experimental results show that the proposed algorithm achieves better prediction performance on BindingDB, Kinase, Human and C.elegans datasets compared with the existing prediction methods. The AUC values achieve 0.963, 0.937, 0.983, 0.990 on the four datasets, demonstrating significant superiority over the other algorithms.
    • loading

    Catalog

      Turn off MathJax
      Article Contents

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return