• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chu Zhen, Mi Qing, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Part-Level Occlusion-Aware Human Pose Estimation[J]. Journal of Computer Research and Development, 2022, 59(12): 2760-2769. DOI: 10.7544/issn1000-1239.20210723
Citation: Chu Zhen, Mi Qing, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Part-Level Occlusion-Aware Human Pose Estimation[J]. Journal of Computer Research and Development, 2022, 59(12): 2760-2769. DOI: 10.7544/issn1000-1239.20210723

Part-Level Occlusion-Aware Human Pose Estimation

Funds: This work was supported by the National Natural Science Foundation of China (61771026, 62176010) and the Key Project of Beijing Municipal Education Commission, China ( KZ201910005008).
More Information
  • Published Date: November 30, 2022
  • With the rapid development of deep learning, human pose estimation technology has made remarkable progress in recent years, but the existing methods are still difficult to deal with the common occlusion problem. To address this problem, a human pose estimation method based on keypoint-level occlusion inference is proposed in this paper. Firstly, a baseline human pose estimation network is used to obtain the noisy representation of each keypoint of human body from images with occlusion noises. Then, the occluded keypoints are estimated through the occlusion part prediction module to obtain the visibility vector. The occlusion part prediction module is proposed in this study, which consists of two submodules: occlusion part classification network and visibility encoder. The occlusion part classification network predicts the occlusion state of each keypoint of the human body. Based on the channel attention mechanism, the visibility encoder converts the predicted occlusion state into a set of weight parameters. Finally, the visibility vector and noise features are fused by channel re-weighting method to obtain the keypoint-level occlusion aware features, which are used to calculate the heatmaps of the keypoints. Experimental results on MPII and LSP(leeds sports pose) datasets show that, compared with the baseline human pose estimation network, the proposed method can better deal with the occlusion problem at a small extra computational cost, and achieve better results than existing state-of-the-art methods.
  • Related Articles

    [1]Ge Zhenxing, Xiang Shuai, Tian Pinzhuo, Gao Yang. Solving GuanDan Poker Games with Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2024, 61(1): 145-155. DOI: 10.7544/issn1000-1239.202220697
    [2]Liu Qixu, Liu Jiaxi, Jin Ze, Liu Xinyu, Xiao Juxin, Chen Yanhui, Zhu Hongwen, Tan Yaokang. Survey of Artificial Intelligence Based IoT Malware Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2234-2254. DOI: 10.7544/issn1000-1239.202330450
    [3]Li Qian, Lin Chenhao, Yang Yulong, Shen Chao, Fang Liming. Adversarial Attacks and Defenses Against Deep Learning Under the Cloud-Edge-Terminal Scenes[J]. Journal of Computer Research and Development, 2022, 59(10): 2109-2129. DOI: 10.7544/issn1000-1239.20220665
    [4]Li Minghui, Jiang Peipei, Wang Qian, Shen Chao, Li Qi. Adversarial Attacks and Defenses for Deep Learning Models[J]. Journal of Computer Research and Development, 2021, 58(5): 909-926. DOI: 10.7544/issn1000-1239.2021.20200920
    [5]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [6]Cao Zhenfu. New Devolopment of Information Security——For the 60th Anniversary of Journal of Computer Research and Development[J]. Journal of Computer Research and Development, 2019, 56(1): 131-137. DOI: 10.7544/issn1000-1239.2019.20180756
    [7]Wang Yilei, Zhuo Yifan, Wu Yingjie, Chen Mingqin. Question Answering Algorithm on Image Fragmentation Information Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2018, 55(12): 2600-2610. DOI: 10.7544/issn1000-1239.2018.20180606
    [8]Li Chao, Yin Lihua, Guo Yunchuan. Analysis for Probabilistic and Timed Information Flow Security Properties via ptSPA[J]. Journal of Computer Research and Development, 2011, 48(8): 1370-1380.
    [9]Wei Yong, Lian Yifeng, and Feng Dengguo. A Network Security Situational Awareness Model Based on Information Fusion[J]. Journal of Computer Research and Development, 2009, 46(3): 353-362.
    [10]Liu Guohua, Song Jinling, Huang Liming, Zhao Danfeng, Song Li. Measurement and Elimination of Information Disclosure in Publishing Views[J]. Journal of Computer Research and Development, 2007, 44(7): 1227-1235.
  • Cited by

    Periodical cited type(2)

    1. 邵子豪,霍如,王志浩,倪东,谢人超. 基于区块链的移动群智感知数据处理研究综述. 浙江大学学报(工学版). 2024(06): 1091-1106 .
    2. 赵贺贺,高鹏飞,张健明. 英式逆拍卖可以提高第三支柱养老保险市场效率吗?. 长沙民政职业技术学院学报. 2023(01): 74-80 .

    Other cited types(1)

Catalog

    Article views (221) PDF downloads (123) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return