• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Chao, Yin Lihua, Guo Yunchuan. Analysis for Probabilistic and Timed Information Flow Security Properties via ptSPA[J]. Journal of Computer Research and Development, 2011, 48(8): 1370-1380.
Citation: Li Chao, Yin Lihua, Guo Yunchuan. Analysis for Probabilistic and Timed Information Flow Security Properties via ptSPA[J]. Journal of Computer Research and Development, 2011, 48(8): 1370-1380.

Analysis for Probabilistic and Timed Information Flow Security Properties via ptSPA

More Information
  • Published Date: August 14, 2011
  • Information flow analysis is one of the primary approaches for analyzing computer security problems, such as covert channel and data leak. Security process algebra(SPA) is a classic method used in researching information security properties in nondeterministic system. To analyze the information security properties and capture the information leakage in probabilistic and real time system, SPA is extended in probabilistic and time setting. Probabilistic and time security process algebra(ptSPA), an extension of SPA, is proposed by first introducing the probabilistic and time calculus to specify activities constricted by probability and time, and extending the formal syntax and semantic to enhance the SPA. Then, the related notion of probabilistic and time bisimulation equivalence is presented, to describe two observable behavior traces are equivalent when considering probability and time. Based on ptSPA, several information flow security properties in probabilistic and real time system, such as TBSPNI, PTBNDC and SPTBNDC are defined, which can capture probabilistic and time covert channel while the original SPA cannot. The relations among the information flow security properties are analyzed. Finally, a case study is given to show that the expressiveness of calculus in ptSPA is possible to model and analyze probabilistic and time systems.
  • Related Articles

    [1]Wang Jieting, Qian Yuhua, Li Feijiang, Liu Guoqing. Support Vector Machine with Eliminating the Random Consistency[J]. Journal of Computer Research and Development, 2020, 57(8): 1581-1593. DOI: 10.7544/issn1000-1239.2020.20200127
    [2]Feng Chang, Liao Shizhong. Model Selection for Gaussian Kernel Support Vector Machines in Random Fourier Feature Space[J]. Journal of Computer Research and Development, 2016, 53(9): 1971-1978. DOI: 10.7544/issn1000-1239.2016.20150489
    [3]Hua Xiaopeng, Ding Shifei. Locality Preserving Twin Support Vector Machines[J]. Journal of Computer Research and Development, 2014, 51(3): 590-597.
    [4]Guo Husheng, Wang Wenjian. A Support Vector Machine Learning Method Based on Granule Shift Parameter[J]. Journal of Computer Research and Development, 2013, 50(11): 2315-2324.
    [5]Ding Lizhong and Liao Shizhong. Approximate Model Selection on Regularization Path for Support Vector Machines[J]. Journal of Computer Research and Development, 2012, 49(6): 1248-1255.
    [6]Xu Peng, Liu Qiong, and Lin Sen. Internet Traffic Classification Using Support Vector Machine[J]. Journal of Computer Research and Development, 2009, 46(3): 407-414.
    [7]Xiong Jinzhi, Yuan Huaqiang, Peng Hong. A General Formulation of Polynomial Smooth Support Vector Machines[J]. Journal of Computer Research and Development, 2008, 45(8): 1346-1353.
    [8]Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
    [9]Liu Xiangdong, Luo Bin, and Chen Zhaoqian. Optimal Model Selection for Support Vector Machines[J]. Journal of Computer Research and Development, 2005, 42(4): 576-581.
    [10]Wu Gaowei, Tao Qing, Wang Jue. Support Vector Machines Based on Posteriori Probability[J]. Journal of Computer Research and Development, 2005, 42(2): 196-202.

Catalog

    Article views (726) PDF downloads (476) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return