• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Yiting, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Unbiased Learning to Rank Based on Relevance Correction[J]. Journal of Computer Research and Development, 2022, 59(12): 2867-2877. DOI: 10.7544/issn1000-1239.20210865
Citation: Wang Yiting, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Unbiased Learning to Rank Based on Relevance Correction[J]. Journal of Computer Research and Development, 2022, 59(12): 2867-2877. DOI: 10.7544/issn1000-1239.20210865

Unbiased Learning to Rank Based on Relevance Correction

Funds: This work was supported by the National Key Research and Development Program of China (2020AAA0105200) and the National Natural Science Foundation of China (61773362, 61906180).
More Information
  • Published Date: November 30, 2022
  • Compared with the human annotated relevance labels, the user click data are easily obtained and can better reflect user preferences. Using clicks as training labels can reduce the cost, and the ranking models can be updated in real time. However, the raw clicks are biased and noisy, so it is necessary to design an effective method of unbiased learning to rank. Aiming at the problem that the dual learning algorithm achieve sub-optimal solutions thus cannot eliminate the bias completely, we propose a new method of unbiased learning to rank based on relevance correction. Firstly, we use the existing small-scale query-document pairs with relevance labels to train the ranking model and then use it to get more accurate predictions of the relevance score. Secondly, the click data and the predicted relevance scores are used to train the propensity model. Finally, we take the parameter values of the obtained model as the initial values of the dual learning process, and then jointly train the models with user clicks. The proposed method does not affect the online calculation speed and can be used in online learning scenarios. Tested in different degrees of click bias and real click scenarios, the proposed method can enhance the performance of the existing method as showed in the results.
  • Related Articles

    [1]Ge Zhenxing, Xiang Shuai, Tian Pinzhuo, Gao Yang. Solving GuanDan Poker Games with Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2024, 61(1): 145-155. DOI: 10.7544/issn1000-1239.202220697
    [2]Liu Qixu, Liu Jiaxi, Jin Ze, Liu Xinyu, Xiao Juxin, Chen Yanhui, Zhu Hongwen, Tan Yaokang. Survey of Artificial Intelligence Based IoT Malware Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2234-2254. DOI: 10.7544/issn1000-1239.202330450
    [3]Li Qian, Lin Chenhao, Yang Yulong, Shen Chao, Fang Liming. Adversarial Attacks and Defenses Against Deep Learning Under the Cloud-Edge-Terminal Scenes[J]. Journal of Computer Research and Development, 2022, 59(10): 2109-2129. DOI: 10.7544/issn1000-1239.20220665
    [4]Li Minghui, Jiang Peipei, Wang Qian, Shen Chao, Li Qi. Adversarial Attacks and Defenses for Deep Learning Models[J]. Journal of Computer Research and Development, 2021, 58(5): 909-926. DOI: 10.7544/issn1000-1239.2021.20200920
    [5]Chen Yufei, Shen Chao, Wang Qian, Li Qi, Wang Cong, Ji Shouling, Li Kang, Guan Xiaohong. Security and Privacy Risks in Artificial Intelligence Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135-2150. DOI: 10.7544/issn1000-1239.2019.20190415
    [6]Cao Zhenfu. New Devolopment of Information Security——For the 60th Anniversary of Journal of Computer Research and Development[J]. Journal of Computer Research and Development, 2019, 56(1): 131-137. DOI: 10.7544/issn1000-1239.2019.20180756
    [7]Wang Yilei, Zhuo Yifan, Wu Yingjie, Chen Mingqin. Question Answering Algorithm on Image Fragmentation Information Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2018, 55(12): 2600-2610. DOI: 10.7544/issn1000-1239.2018.20180606
    [8]Li Chao, Yin Lihua, Guo Yunchuan. Analysis for Probabilistic and Timed Information Flow Security Properties via ptSPA[J]. Journal of Computer Research and Development, 2011, 48(8): 1370-1380.
    [9]Wei Yong, Lian Yifeng, and Feng Dengguo. A Network Security Situational Awareness Model Based on Information Fusion[J]. Journal of Computer Research and Development, 2009, 46(3): 353-362.
    [10]Liu Guohua, Song Jinling, Huang Liming, Zhao Danfeng, Song Li. Measurement and Elimination of Information Disclosure in Publishing Views[J]. Journal of Computer Research and Development, 2007, 44(7): 1227-1235.
  • Cited by

    Periodical cited type(2)

    1. 邵子豪,霍如,王志浩,倪东,谢人超. 基于区块链的移动群智感知数据处理研究综述. 浙江大学学报(工学版). 2024(06): 1091-1106 .
    2. 赵贺贺,高鹏飞,张健明. 英式逆拍卖可以提高第三支柱养老保险市场效率吗?. 长沙民政职业技术学院学报. 2023(01): 74-80 .

    Other cited types(1)

Catalog

    Article views (112) PDF downloads (68) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return