Citation: | Qi Le, Chang Yisong, Chen Yuxiao, Zhang Xu, Chen Mingyu, Bao Yungang, Zhang Ke. A System-Level Platform with SoC-FPGA for RISC-V Hardware-Software Integration[J]. Journal of Computer Research and Development, 2023, 60(6): 1204-1215. DOI: 10.7544/issn1000-1239.202330060 |
Building a system-level prototype platform with FPGAs for hardware-software integration of one processor design under test (DUT) is an essential step in pre-silicon evaluations of the processor chip design. In order to meet design requirements of open-source processors based on the emerging open RISC-V instruction set architecture with minimized FPGA development efforts, we propose a system-level platform with a tightly-coupled SoC-FPGA chip for agile hardware-software integration and evaluation of RISC-V DUT processors. In specific, we first elaborate the interconnect between the DUT and the SoC via the existing SoC-FPGA interfaces. Then we introduce a scheme of virtual inter-processor interrupt to support highly-efficient collaboration between the DUT and the hardcore ARM processor in the SoC-FPGA. As a result, the DUT is able to flexibly leverage various I/O peripherals for full-system evaluation. The hardcore ARM processor is also involved for acceleration of the DUT's time-consuming software workloads. Additionally, we build a configurable framework on cloud for flexible composition and system integration of the DUT's hardware and software components. Based on our evaluation results with a couple of target RISC-V processors, we believe that our proposed platform is of great significance in improving efficiency and shortening iteration period when building a system-level prototype platform.
[1] |
王诲喆,唐丹,余子濠,等. 开源芯片、RISC-V与敏捷开发[J]. 大数据,2019,5(4):50−66
Wang Huizhe, Tang Dan, Yu Zihao, et al. Open-source chip, RISC-V and agile development[J]. Big Data Research, 2019, 5(4): 50−66 (in Chinese)
|
[2] |
余子濠,刘志刚,李一苇,等. 芯片敏捷开发实践:标签化RISC-V[J]. 计算机研究与发展,2019,56(1):35−48 doi: 10.7544/issn1000-1239.2019.20180771
Yu Zihao, Liu Zhigang, Li Yiwei, et al. Practice of chip agile development: Labeled RISC-V[J]. Journal of Computer Research and Development, 2019, 56(1): 35−48 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180771
|
[3] |
Lee Y, Waterman A, Cook H, et al. An agile approach to building RISC-V microprocessors[J]. IEEE Micro, 2016, 2(36): 8−20
|
[4] |
Teich J. Hardware/software co-design: The past, the present, and predicting the future[J]. Proceedings of the IEEE, 2012, 100: 1411−1430 doi: 10.1109/JPROC.2011.2182009
|
[5] |
刘畅,武延军,吴敬征,等. RISC-V指令集架构研究综述[J]. 软件学报,2021,32(12):3992−4024
Liu Chang, Wu Yanjun, Wu Jingzheng, et al. Survey on RISC-V system architecture research[J]. Journal of Software, 2021, 32(12): 3992−4024 (in Chinese)
|
[6] |
Rashinkar P, Paterson P, SINGH L. System-On-A-Chip Verification: Methodology and Techniques[M]. Norwell: Kluwer Academic Publishers, 2002
|
[7] |
Altera. What is An SoC-FPGA?[EB/OL]. (2020-08-13)[2023-01-01].https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ab/ab1_soc_fpga.pdf
|
[8] |
Pemberton N, Amid A. FireMarshal: Making HW/SW co-design reproducible and reliable[C]//Proc of 2021 IEEE Int Symp on Performance Analysis of Systems and Software (ISPASS). Piscataway, NJ: IEEE, 2021: 299−309
|
[9] |
Karandikar S, Mao H, Kim D, et al. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud[C] //Proc of 2018 ACM/IEEE 45th Annual Int Symp on Computer Architecture (ISCA). Piscataway, NJ: IEEE, 2018: 29−42
|
[10] |
SiFive. Source files for SiFive's Freedom platforms [EB/OL]. (2016-11-24) [2023-01-01].https://github.com/sifive/freedom
|
[11] |
Asanovic K, Avizienis R, Bachrach J, et al. The rocket chip generator[R]. Berkeley: University of California, 2016
|
[12] |
Mantovani P, Giri D, Guglielmo G D, et al. Agile SoC development with open ESP[C] //Proc of 2020 IEEE/ACM Int Conf on Computer Aided Design (ICCAD). Piscataway, NJ: IEEE, 2020: 1−9
|
[13] |
重庆海云捷迅科技有限公司. 基于SoC FPGA的RISC-V硬件测试方法及系统: 中国, CN202210145663.7[P]. (2022-5-24) [2023-04-01].
Chong qing haiyun jiesoon science and technology. SoC FPGA-based RISC-V hardware test method and system: China, CN202210145663.7
|
[14] |
Xilinx. Zynq ultraScale+ device technical reference manual [EB/OL]. (2020-04-26) [2023-01-02]. https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
|
[15] |
李梦东,邵鹏林,李小龙. SHA-3获胜算法:Keccak评析[J]. 北京电子科技学院学报,2013,21(2):18−23 doi: 10.3969/j.issn.1672-464X.2013.02.005
Li Mengdong, Shao Penglin, Li Xiaolong. A short review on SHA-3 winner: Keccak[J]. Journal of Beijing Electronic Science and Technology Institute, 2013, 21(2): 18−23 (in Chinese) doi: 10.3969/j.issn.1672-464X.2013.02.005
|
[16] |
王海涛. SHA-3标准Keccak算法的安全性分析与实现[D]. 西安: 西安电子科技大学, 2017
Wang Hai Tao. Security analysis and implementation of Keccak in SHA-3 standard[D].Xidian University, 2017
|
[17] |
Lee D, Kohlbrenner D, Shinde S, et al. Keystone: An open framework for architecting TEEs [EB/OL]. (2022-04-02) [2022-12-19]. http://docs.keystone-enclave.org/en/latest/
|
[18] |
Lee D, Kohlbrenner D, Shinde S, et al. Keystone: An open framework for architecting trusted execution environments [C] //Proc of the 15th European Conf on Computer Systems. 2020[2022-12-18].https://dl.acm.org/doi/proceedings/10.1145/3342195.
|
[19] |
Wang Huaqiang. Nutshell: A linux-compatible RISC-V processor designed by undergraduates[C/OL] //Proc of RISC-V Global Forum 2020 [2023-01-01].https://riscvglobalforum2020.sched.com/event/dO2g/nutshell-a-linux-compatible-risc-v-processor-designed-by-undergraduates-huaqiang-wang-university-of-chinese-academy-of-sciences
|
[20] |
Wang Huaqiang, Zhang Zifei, Zhang Linjuan, et al. OSCPU/NutShell: RISC-V SoC designed by students in UCAS GitHub repository [EB/OL]. (2020-07-07) [2022-12-28].https://github.com/OSCPU/NutShell
|
[21] |
Wang Jiulong, Wu Ruopu, Chen Guokai. RISC-V toolchain and agile development based open-source neuromorphic processor[EB/OL]. (2022-09-30) [2023-01-01].https://gitee.com/openmantianxing/wenquxing22a
|
[22] |
B. Sá, J. Martins and S. Pinto. A first look at RISC-V virtualization from an embedded systems perspective[J]. IEEE Transactions on Computers, 71(9): 2177−2190
|
[23] |
Xu Yinan, Yu Zihao, Tang Dan, et al. Towards developing high performance RISC-V processors using agile methodology[C] //Proc of the 55th IEEE/ACM Int Symp on Microarchitecture (MICRO) . Piscataway, NJ: IEEE, 2022: 1178−1199
|
[24] |
王凯帆,徐易难,余子濠,等. 香山开源高性能RISC-V处理器设计与实现[J]. 计算机研究与发展,2023,60(3):476−493 doi: 10.7544/issn1000-1239.202221036
Wang Kaifan, Xu Yinan, Yu Zihao, et al. XiangShan open-source high performance RISC-V processor design and implementation[J]. Journal of Computer Research and Development, 2023, 60(3): 476−493 (in Chinese) doi: 10.7544/issn1000-1239.202221036
|
[1] | Li Dongwen, Zhong Zhenyu, Sun Yufei, Shen Junyu, Ma Zizhi, Yu Chuanyue, Zhang Yuzhi. LingLong: A High-Quality Small-Scale Chinese Pre-trained Language Model[J]. Journal of Computer Research and Development, 2025, 62(3): 682-693. DOI: 10.7544/issn1000-1239.202330844 |
[2] | Cui Yuanning, Sun Zequn, Hu Wei. A Pre-trained Universal Knowledge Graph Reasoning Model Based on Rule Prompts[J]. Journal of Computer Research and Development, 2024, 61(8): 2030-2044. DOI: 10.7544/issn1000-1239.202440133 |
[3] | Chen Rui, Wang Zhanquan. Uni-LSDPM: A Unified Online Learning Session Dropout Prediction Model Based on Pre-Training[J]. Journal of Computer Research and Development, 2024, 61(2): 441-459. DOI: 10.7544/issn1000-1239.202220834 |
[4] | Zhang Naizhou, Cao Wei, Zhang Xiaojian, Li Shijun. Conversation Generation Based on Variational Attention Knowledge Selection and Pre-trained Language Model[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440551 |
[5] | Wang Yan, Tong Xiangrong. Cross-Domain Trust Prediction Based on tri-training and Extreme Learning Machine[J]. Journal of Computer Research and Development, 2022, 59(9): 2015-2026. DOI: 10.7544/issn1000-1239.20210467 |
[6] | Gu Yonghao, Huang Boqi, Wang Jigang, Tian Tian, Liu Yan, Wu Yuesheng. Trojan Traffic Detection Method Based on Semi-Supervised Deep Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1329-1342. DOI: 10.7544/issn1000-1239.20201014 |
[7] | Liu Zhuang, Liu Chang, Wayne Lin, Zhao Jun. Pretraining Financial Language Model with Multi-Task Learning for Financial Text Mining[J]. Journal of Computer Research and Development, 2021, 58(8): 1761-1772. DOI: 10.7544/issn1000-1239.2021.20210298 |
[8] | Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817 |
[9] | Zhang Yong, Chen Rongrong, Zhang Jing. Safe Tri-training Algorithm Based on Cross Entropy[J]. Journal of Computer Research and Development, 2021, 58(1): 60-69. DOI: 10.7544/issn1000-1239.2021.20190838 |
[10] | Cheng Xiaoyang, Zhan Yongzhao, Mao Qirong, Zhan Zhicai. Video Semantic Analysis Based on Topographic Sparse Pre-Training CNN[J]. Journal of Computer Research and Development, 2018, 55(12): 2703-2714. DOI: 10.7544/issn1000-1239.2018.20170579 |
1. |
刘行,明洋,王晨豪,赵一. 基于SM9的可验证公平标识广播代理重加密. 计算机学报. 2025(03): 721-737 .
![]() | |
2. |
金彪,林翔,熊金波,尤玮婧,李璇,姚志强. 基于水印技术的深度神经网络模型知识产权保护. 计算机研究与发展. 2024(10): 2587-2606 .
![]() | |
3. |
高改梅,段明博,荀亚玲,刘春霞,党伟超. 支持密码逆向防火墙的基于SM9的属性基可搜索加密方案. 计算机应用. 2024(11): 3495-3502 .
![]() | |
4. |
张元英. 基于国密SM9的多接收者标识签密方案. 宜春学院学报. 2024(09): 44-50 .
![]() |