Citation: | Chen Rui, Wang Zhanquan. Uni-LSDPM: A Unified Online Learning Session Dropout Prediction Model Based on Pre-Training[J]. Journal of Computer Research and Development, 2024, 61(2): 441-459. DOI: 10.7544/issn1000-1239.202220834 |
To assist learners in maintaining the continuity of online learning and guiding the implementation of the optimal learning path, the intelligent tutoring system (ITS) needs to detect the tendency of learners to withdraw from learning in time and take corresponding intervention measures at the right time. Therefore, online learning session dropout prediction research is necessary. However, compared with traditional course dropouts, session dropouts occur more frequently and with shorter single study sessions. Session dropout requires the accurate prediction of learning session dropout state based on limited learning behavior feature data. Therefore, the fragmentation of learning behavior and the immediacy and accuracy of prediction results are the challenges and difficulties of learning session dropout prediction tasks. For the session dropout prediction task, we propose a unified online learning session dropout prediction model (Uni-LSDPM). Based on the pre-training and fine-tuning paradigm, Uni-LSDPM uses a multi-layer Transformer structure. In the pre-training stage, a bidirectional attention mechanism is used to learn the representation of sequence of learners’ continuous behavioral interaction features. In the fine-tuning stage, a sequence-to-sequence (Seq2Seq) attentional mechanism is used to learn the sequence combination of the learner’s continuous behavioral interaction features and dropout state. The proposed model is pre-trained and fine-tuned based on the EdNet public dataset, and the best prediction effect is obtained through ablation experiment. Comparative experiments are conducted based on multiple datasets. Experimental results show that Uni-LSDPM outperforms existing models in terms of AUC and ACC, and prove that the model has certain robustness and scalability.
[1] |
Son N T, Jaafar J, Aziz I A, et al. Meta-heuristic algorithms for learning path recommender at MOOC[J]. IEEE Access, 2021, 9: 59093−59107 doi: 10.1109/ACCESS.2021.3072222
|
[2] |
Wanichsan D, Panjaburee P, Chookaew S. Enhancing knowledge integration from multiple experts to guiding personalized learning paths for testing and diagnostic systems[J]. Computers and Education: Artificial Intelligence, 2021, 2: 100013 doi: 10.1016/j.caeai.2021.100013
|
[3] |
Ramos D B, Ramos I M M, Gasparini I, et al. A new learning path model for e-learning systems[J]. International Journal of Distance Education Technologies, 2021, 19(2): 34−54 doi: 10.4018/IJDET.20210401.oa2
|
[4] |
Meng Lingling, Zhang Wanxue, Chu Yu, et al. LD–LP generation of personalized learning path based on learning diagnosis[J]. IEEE Transactions on Learning Technologies, 2021, 14(1): 122−128 doi: 10.1109/TLT.2021.3058525
|
[5] |
Aldowah H, Al-Samarraie H, Alzahrani A I, et al. Factors affecting student dropout in MOOCs: A cause and effect decision‐making model[J]. Journal of Computing in Higher Education, 2020, 32(2): 429−454 doi: 10.1007/s12528-019-09241-y
|
[6] |
Zhang Jingjing, Gao Ming, Zhang Jiang. The learning behaviours of dropouts in MOOCs: A collective attention network perspective[J]. Computers & Education, 2021, 167: 104189
|
[7] |
Eriksson T, Adawi T, Stöhr C. “Time is the bottleneck”: A qualitative study exploring why learners drop out of MOOCs[J]. Journal of Computing in Higher Education, 2017, 29(1): 133−146 doi: 10.1007/s12528-016-9127-8
|
[8] |
Choi H J, Park J H. Testing a path-analytic model of adult dropout in online degree programs[J]. Computers & Education, 2018, 116: 130−138
|
[9] |
Borrella I, Caballero-Caballero S, Ponce-Cueto E. Taking action to reduce dropout in MOOCs: Tested interventions[J]. Computers & Education, 2022, 179: 104412
|
[10] |
Halfaker A, Keyes O, Kluver D, et al. User session identification based on strong regularities in inter-activity time[C] //Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 410−418
|
[11] |
Prenkaj B, Stilo G, Madeddu L. Challenges and solutions to the student dropout prediction problem in online courses[C] //Proc of the 29th ACM Int Conf on Information & Knowledge Management. New York: ACM, 2020: 3513−3514
|
[12] |
Prenkaj B, Velardi P, Stilo G, et al. A survey of machine learning approaches for student dropout prediction in online courses[J]. ACM Computing Surveys, 2020, 53(3): 1−34
|
[13] |
Dalipi F, Imran A S, Kastrati Z. MOOC dropout prediction using machine learning techniques: Review and research challenges[C]// Proc of the 2018 IEEE Global Engineering Education Conf (EDUCON). Piscataway, NJ: IEEE, 2018: 1007−1014
|
[14] |
Alshabandar R, Hussain A, Keight R, et al. Students performance prediction in online courses using machine learning algorithms[C/OL]// Proc of the 2020 Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2020[2022-08-20].https://ieeexplore.ieee.org/document/9207196
|
[15] |
De Oliveira M M, Barwaldt R, Pias M R, et al. Understanding the student dropout in distance learning[C/OL]// Proc of the 2019 IEEE Frontiers in Education Conf (FIE). Piscataway, NJ: IEEE, 2019[2022-08-20].https://ieeexplore.ieee.org/document/9028433
|
[16] |
Qiu Lin, Liu Yanshen, Hu Quan, et al. Student dropout prediction in massive open online courses by convolutional neural networks[J]. Soft Computing, 2019, 23(20): 10287−10301 doi: 10.1007/s00500-018-3581-3
|
[17] |
Olive D M, Huynh D Q, Reynolds M, et al. A quest for a one-size-fits-all neural network: Early prediction of students at risk in online courses[J]. IEEE Transactions on Learning Technologies, 2019, 12(2): 171−183 doi: 10.1109/TLT.2019.2911068
|
[18] |
Xing Wanli, Du Dongping. Dropout prediction in MOOCs: Using deep learning for personalized intervention[J]. Journal of Educational Computing Research, 2019, 57(3): 547−570 doi: 10.1177/0735633118757015
|
[19] |
Lee Y, Shin D, Loh H B, et al. Deep attentive study session dropout prediction in mobile learning environment[C] //Proc of the 12th Int Conf on Computer Supported Education. Portugal: SciTePress, 2020: 26−35
|
[20] |
Jacob D, Chang Mingwei, Kenton L, et al. Bert: Pre-training of deep bidirectional transformers for language understanding [C] //Proc of the 2019 Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2019: 4171−4186
|
[21] |
Dong Li, Yang Nan, Wang Wenhui, et al. Unified language model pre-training for natural language understanding and generation[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT, 2019: 13063–13075
|
[22] |
Dass S, Gary K, Cunningham J. Predicting student dropout in self-paced MOOC course using random forest model[J]. Information, 2021, 12(11): 476 doi: 10.3390/info12110476
|
[23] |
Hong Bowei, Wei Zhiqiang, Yang Yongquan. A two-layer cascading method for dropout prediction in MOOC[J]. Mechatronic Systems and Control, 2019, 47(2): 91−97
|
[24] |
Coussement K, Phan M, De Caigny A, et al. Predicting student dropout in subscription-based online learning environments: The beneficial impact of the logit leaf model[J]. Decision Support Systems, 2020, 135: 113325 doi: 10.1016/j.dss.2020.113325
|
[25] |
Lee J H, Kim M, Kim D, et al. Evaluation of predictive models for early identification of dropout students[J]. Journal of Information Processing Systems, 2021, 17(3): 630−644
|
[26] |
Boudjehem R, Lafifi Y. A new approach to identify dropout learners based on their performance-based behavior[J]. Journal of Universal Computer Science, 2021, 27(10): 1001−1025 doi: 10.3897/jucs.74280
|
[27] |
Alamri A, Sun Z, Cristea A I, et al. MOOC next week dropout prediction: Weekly assessing time and learning patterns[C] //Proc of the 17th Int Conf on Intelligent Tutoring Systems. Berlin: Springer, 2021: 119−130
|
[28] |
Jin Cong. Dropout prediction model in MOOC based on clickstream data and student sample weight[J]. Soft Computing, 2021, 25(14): 8971−8988 doi: 10.1007/s00500-021-05795-1
|
[29] |
Imran A S, Dalipi F, Kastrati Z. Predicting student dropout in a MOOC: An evaluation of a deep neural network model[C] //Proc of the 5th Int Conf on Computing and Artificial Intelligence. New York: ACM, 2019: 190−195
|
[30] |
Wu Dongen, Hao Pengyi, Zheng Yuxiang, et al. Classmates enhanced diversity-self-attention network for dropout prediction in MOOCs[C] //Proc of the 28th Int Conf on Neural Information Processing. Berlin: Springer, 2021: 609−620
|
[31] |
Goel Y, Goyal R. On the effectiveness of self-training in mooc dropout prediction[J]. Open Computer Science, 2020, 10(1): 246−258 doi: 10.1515/comp-2020-0153
|
[32] |
Zhang Yan, Chang Liang, Liu Tieyuan. MOOCs dropout prediction based on hybrid deep neural network[C] //Proc of the 2020 Int Conf on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). Piscataway, NJ: IEEE, 2020: 197−203
|
[33] |
Wu Nannan, Zhang Lei, Gao Yi, et al. CLMS-Net: Dropout prediction in MOOCs with deep learning[C/OL] //Proc of the 2019 ACM Turing Celebration Conf-China. New York: ACM, 2019[2022-08-20].https://dl.acm.org/doi/10.1145/3321408.3322848
|
[34] |
Feng Wenzheng, Tang Jie, Liu T X. Understanding dropouts in MOOCs[C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 517−524
|
[35] |
Fu Qian, Gao Zhanghao, Zhou Junyi, et al. CLSA: A novel deep learning model for MOOC dropout prediction[J]. Computers & Electrical Engineering, 2021, 94: 107315
|
[36] |
Mubarak A A, Cao Han, Hezam I M. Deep analytic model for student dropout prediction in massive open online courses[J]. Computers & Electrical Engineering, 2021, 93: 107271
|
[37] |
Wang Lin, Yu Zhengfei, Wang Mengru, et al. MOOC dropout prediction based on dynamic embedding representation learning[C/OL] //Proc of the 5th Int Conf on Computer Science and Application Engineering. New York: ACM, 2021[2022-08-20].https://dl.acm.org/doi/10.1145/3487075.3487141
|
[38] |
Nitta I, Ishizaki R, Shingu M, et al. Graph-based massive open online course (MOOC) dropout prediction using clickstream data in virtual learning environment[C] //Proc of the 16th Int Conf on Computer Science & Education (ICCSE). Piscataway, NJ: IEEE, 2021: 48−52
|
[39] |
Ramírez Luelmo S I, El Mawas N, Heutte J. Machine learning techniques for knowledge tracing: A systematic literature review[C] //Proc of the 13th Int Conf on Computer Supported Education. Portugal: SciTePress, 2021: 60−70
|
[40] |
De Oliveira T N, Bernardini F, Viterbo J. An overview on the use of educational data mining for constructing recommendation systems to mitigate retention in higher education[C/OL]// Proc of the 2021 IEEE Frontiers in Education Conf (FIE). Piscataway, NJ: IEEE, 2021[2022-08-20].https://ieeexplore.ieee.org/document/9637207
|
[41] |
Song Xiangyu, Li Jianxin, Cai Taotao, et al. A survey on deep learning based knowledge tracing[J]. Knowledge-Based Systems, 2022, 258: 110036 doi: 10.1016/j.knosys.2022.110036
|
[42] |
Shen Shuanghong, Liu Qi, Chen Enhong, et al. Convolutional knowledge tracing: Modeling individualization in student learning process[C] //Proc of the 43rd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2020: 1857−1860
|
[43] |
Sun Xia, Zhao Xu, Li Bo, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8239−8245
|
[44] |
Ghosh A, Heffernan N, Lan A S. Context-aware attentive knowledge tracing[C]//Proc of the 26th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2330−2339
|
[45] |
Liu Qi, Huang Zhenya, Yin Yu, et al. Ekt: Exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(1): 100−115
|
[46] |
Pandey S, Karypis G. A self-attentive model for knowledge tracing[J]. arXiv preprint, arXiv: 1907. 06837, 2019
|
[47] |
Zhang Wei, Qu Kaiyuan, Han Yahui, et al. A novel knowledge tracing model based on collaborative multi-head attention[C]// Proc of the 6th Int Conf on Innovation in Artificial Intelligence (ICIAI). New York: ACM, 2022: 210−215
|
[48] |
Tan Weicong, Jin Yuan, Liu Ming, et al. BiDKT: Deep knowledge tracing with BERT[C] //Proc of the 2021 Int Conf on Ad Hoc Networks, Proc of the 2021 Int Conf on Testbeds and Research Infrastructures. Berlin: Springer, 2022: 260−278
|
[49] |
Ma Yuling, Han Peng, Qiao Huiyan, et al. SPAKT: A self-supervised pre-training method for knowledge tracing[J]. IEEE Access, 2022, 10: 72145−72154 doi: 10.1109/ACCESS.2022.3187987
|
[50] |
Schrumpf J, Weber F, Thelen T. A neural natural language processing system for educational resource knowledge domain classification[C/OL]// Proc of the 19th Fachtagung Bildungstechnologien (DELFI). 2021[2022-08-20].https://dl.gi.de/handle/20.500.12116/37023
|
[51] |
Schrumpf J, Thelen T. Re-thinking Transformer based educational resource recommendation engines for higher education[C/OL]// Proc of the 20th Fachtagung Bildungstechnologien (DELFI). 2022[2022-08-20].https://dl.gi.de/handle/20.500.12116/38852
|
[52] |
Lebreton P, Yamagishi K. Study on user quitting in the puffer live TV video streaming service[C]// Proc of the 13th Int Conf on Quality of Multimedia Experience (QoMEX). Piscataway, NJ: IEEE, 2021: 19−24
|
[53] |
Hatt T, Feuerriegel S. Early detection of user exits from clickstream data: A Markov modulated marked point process model[C]//Proc of the Web Conf. New York: ACM, 2020: 1671−1681
|
[54] |
Karumbaiah S, Baker R S, Shute V. Predicting quitting in students playing a learning game[C/OL]//Proc of the 11th Int Conf on Educational Data Mining (EDM). 2018[2022-08-20].https://educationaldatamining.org/files/ conferences/EDM2018/papers/EDM2018_paper_39.pdf
|
[55] |
Deeva G, Smedt J D, Koninck P D, et al. Dropout prediction in MOOCs: A comparison between process and sequence mining[C] //Proc of the 2017 Int Conf on Business Process Management. Berlin: Springer, 2017: 243−255
|
[56] |
Liu Kai, Tatinati S, Khong A W H. A weighted feature extraction technique based on temporal accumulation of learner behavior features for early prediction of dropouts[C]// Proc of the 2020 IEEE Int Conf on Teaching, Assessment, and Learning for Engineering (TALE). Piscataway, NJ: IEEE, 2020: 295−302
|
[57] |
Rzepka N, Simbeck K, Müller H G, et al. Keep It Up: In-session dropout prediction to support blended classroom scenarios[C]// Proc of the 14th Int Conf on Computer Supported Education. Portugal: SciTePress, 2022: 131−138
|
[58] |
He Yanbai, Chen Rui, Li Xinya, et al. Online at-risk student identification using RNN-GRU joint neural networks[J]. Information, 2020, 11(10): 474 doi: 10.3390/info11100474
|
[59] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C] // Proc of the 30th Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT, 2017: 5998−6008
|
[60] |
Yin Shengjun, Lei Leqi, Wang Hongzhi, et al. Power of attention in MOOC dropout prediction[J]. IEEE Access, 2020, 8: 202993−203002 doi: 10.1109/ACCESS.2020.3035687
|
[61] |
Pulikottil S C, Gupta M. Onet—A temporal meta embedding network for mooc dropout prediction[C] //Proc of the 2020 IEEE Int Conf on Big Data (Big Data). Piscataway, NJ: IEEE, 2020: 5209−5217
|
[62] |
Choi Y, Lee Y, Shin D, et al. Ednet: A large-scale hierarchical dataset in education[C] //Proc of the 21st Int Conf on Artificial Intelligence in Education. Berlin: Springer, 2020: 69−73
|
[63] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321−357 doi: 10.1613/jair.953
|
[1] | Li Gengsong, Liu Yi, Zheng Qibin, Li Xiang, Liu Kun, Qin Wei, Wang Qiang, Yang Changhong. Algorithm Selection Method Based on Multi-Objective Hybrid Ant Lion Optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. DOI: 10.7544/issn1000-1239.202220769 |
[2] | Sun Penghao, Lan Julong, Shen Juan, Hu Yuxiang. Pinning Control-Based Routing Policy Generation Using Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1563-1572. DOI: 10.7544/issn1000-1239.2021.20200018 |
[3] | Hu Haiyang, Liu Runhua, Hu Hua. Multi-Objective Optimization for Task Scheduling in Mobile Cloud Computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1909-1919. DOI: 10.7544/issn1000-1239.2017.20160757 |
[4] | Li Li, Wang Wanliang, Xu Xinli, Li Weikun. Multi-Objective Particle Swarm Optimization Based on Grid Ranking[J]. Journal of Computer Research and Development, 2017, 54(5): 1012-1023. DOI: 10.7544/issn1000-1239.2017.20160074 |
[5] | Bi Xiaojun, Zhang Lei, Xiao Jing. Constrained Multi-Objective Optimization Algorithm Based on Dual Populations[J]. Journal of Computer Research and Development, 2015, 52(12): 2813-2823. DOI: 10.7544/issn1000-1239.2015.20148025 |
[6] | Zhang Shiwen, Li Zhiyong, Chen Shaomiao, and Li Renfa. Dynamic Multi-Objective Optimization Algorithm Based on Ecological Strategy[J]. Journal of Computer Research and Development, 2014, 51(6): 1313-1330. |
[7] | Wen Renqiang, Zhong Shaobo, Yuan Hongyong, Huang Quanyi. Emergency Resource Multi-Objective Optimization Scheduling Model and Multi-Colony Ant Optimization Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1464-1472. |
[8] | Liu Chun'an, Wang Yuping. Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model[J]. Journal of Computer Research and Development, 2008, 45(4): 603-611. |
[9] | Chang Yan, Liu Xu, Cheng Wenyuan, Xie Xianghui, Cui Degang. Research and Application of Multi-Objective Aircraft Optimization System Based on Grid[J]. Journal of Computer Research and Development, 2007, 44(1): 44-60. |
[10] | Ma Ming, Zhou Chunguang, Zhang Libiao, Ma Jie. Fuzzy Neural Network Optimization by a Multi-Objective Particle Swarm Optimization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(12): 2104-2109. |
1. |
戎珂,施新伟,吕若明. “i7算”赋能AI产业生态可持续发展. 科学学研究. 2025(01): 197-204 .
![]() | |
2. |
张浩严,吕文涛,余润泽,邓志江. 大语言模型研究现状. 无线电工程. 2025(01): 163-174 .
![]() | |
3. |
李东闻,钟震宇,孙羽菲,申峻宇,马子智,于川越,张玉志. 玲珑:一个小规模的高质量中文预训练语言模型. 计算机研究与发展. 2025(03): 682-693 .
![]() | |
4. |
陶江垚,奚雪峰,盛胜利,崔志明,左严. 结构化思维提示增强大语言模型推理能力综述. 计算机工程与应用. 2025(06): 64-83 .
![]() | |
5. |
魏楚元,王昕,周小平,赵光哲,黄明. 大型语言模型及其在建筑行业应用研究综述. 北京建筑大学学报. 2024(02): 1-14+121 .
![]() | |
6. |
庞进喜. 大模型在汽车国际化多语言处理中的应用. 中国汽车. 2024(05): 14-20 .
![]() | |
7. |
王晓璐,杨云轩,谢阳斌. 创造人机对话式学习新形态——大语言模型的教育应用现状与展望. 中小学信息技术教育. 2024(05): 15-17 .
![]() | |
8. |
马伟民. 自然语言大模型技术在政务服务智能客服系统建设中的应用. 信息与电脑(理论版). 2024(08): 86-88 .
![]() | |
9. |
曾白凌. “被中介的真理”:Sora对媒介相合性的追问. 现代传播(中国传媒大学学报). 2024(05): 1-10 .
![]() | |
10. |
童俊杰,申佳,赫罡,张奎. 运营商智算中心建设思路及方案. 邮电设计技术. 2024(09): 68-73 .
![]() | |
11. |
刘同军. 生成式人工智能革新数学教学:场景与案例. 中学数学杂志. 2024(10): 1-4 .
![]() | |
12. |
尹为民. 一种基于预训练模型的类增量学习近似重放方法分析. 电子技术. 2024(10): 144-145 .
![]() | |
13. |
崔金满,李冬梅,田萱,孟湘皓,杨宇,崔晓晖. 提示学习研究综述. 计算机工程与应用. 2024(23): 1-27 .
![]() | |
14. |
王珍珍,向巴卓玛,赵岩松,马星光. 以ChatGPT为代表的大型语言模型在医学教学中的应用. 医学教育管理. 2024(06): 692-697 .
![]() | |
15. |
王琳. 大语言模型技术背景下重塑研究生论文评价与指导. 学位与研究生教育. 2024(12): 30-37 .
![]() | |
16. |
朱俊仪,朱尚明. 利用检索增强生成技术开发本地知识库应用. 通信学报. 2024(S2): 242-247 .
![]() |