Citation: | He Xiaowei, Yue Daheng, Guo Wei, Sui Bingcai, Deng Quan. Promoting Frequency Method for Our Own High Performance Processor Physical Design[J]. Journal of Computer Research and Development, 2024, 61(6): 1429-1435. DOI: 10.7544/issn1000-1239.202330942 |
Promoting core’s frequency is the key method for increasing performance of processor. It is hard to achieve high frequency for processor core by traditional physical design flow. Based on main place and route tools, with the same process, comparable implementation area and power consumption, our own processor core frequency can be promoted by about 30% compared with original design at signoff stage, by employing manually written block netlist, logic and physical design co-optimization, custom routing rule optimization and physical design methodology adjustment.
[1] |
张静. TSMC 12 nm工艺下高性能Cortex-A55 CPU模块的物理设计[D]. 西安:西安电子科技大学,2021
Zhang Jing. Physical design of high-performance Cortex-A55 CPU module based on TSMC12nm process[D]. Xi’an: Xidian university, 2021 (in Chinese)
|
[2] |
王胤翔,孙艳,王伟奇. 基于Cadence Innovus 的高速4核ARM Cortex-A17 CPU物理实现[J]. 中国集成电路,2018,27(12):37−43
Wang Yingxiang, Sun Yan, Wang Weiqi. Implementation of high speed ARM Cortex-A17 quad-core CPU using Cadence Innovus[J]. China Integrated Circuit, 2018, 27(12): 37−43 (in Chinese)
|
[3] |
吴伟贤,周剑扬,许伟坚,等. 基于硅虚拟原型的RISC CPU核物理设计[J]. 微电子学与计算机,2005,22(3):162−169
Wu Weixian, Zhou Jianyang, Xu Weijian, et al. The physical design of a RISC CPU core based on the SVP[J]. Microelectronics & Computer, 2005, 22(3): 162−169 (in Chinese)
|
[4] |
王红. 基于CPU芯片的物理设计与时序优化[D]. 北京:北京工业大学,2020
Wang Hong. Physical design and timing optimization based on CPU chips[D]. Beijing: Beijing University of Technology, 2020 (in Chinese)
|
[5] |
王兵,彭瑞华,傅育熙. 前后端协同的时钟树设计方法[J]. 计算机工程,2008,34(12):227−229,232
Wang Bing, Peng Ruihua, Fu Yuxi. Clock tree design method with front-end and back-end combined[J]. Computer Engineering, 2008, 34(12): 227−229, 232 (in Chinese)
|
[6] |
曾宏. 深亚微米下芯片后端物理设计方法学研究[J]. 中国集成电路,2010,19(2):30−35,49
Zeng Hong. IC physical design methodology research under DSM[J]. China Integrated Circuit, 2010, 19(2): 30−35,49 (in Chinese)
|
[7] |
魏少雄. YHFT-X芯片内核的层次化物理设计[D]. 长沙:国防科技大学,2014
Wei Shaoxiong. Hierarchical physical design of the CorePac in YHFT-X DSP[D]. Changsha: National University of Defense Technology, 2014 (in Chinese)
|
[8] |
陈宇轩,梁利平. 高速数字模块的层次化物理实现技术[J]. 湖南大学学报:自然科学版,2018,45(10):115−120
Chen Yuxuan, Liang Liping. An improved hierarchy physical design flow for high speed circuits[J]. Journal of Hunan University (Natural Sciences), 2018, 45((10): ): 115−120 (in Chinese)
|
[9] |
边少鲜,Feng M,Yue D,等. Innovus机器学习在高性能CPU设计中的应用[J]. 电子技术应用,2020,46(8):54−59,63
Bian Shaoxian, Feng M, Yue D, et al. Innovus machine learning application in performance CPU design[J]. Application of Electronic Technique, 2020, 46(8): 54−59,63 (in Chinese)
|
[10] |
何小威. 高性能CPU核频率提升和功耗优化物理设计方法[J]. 计算机与数字工程,2020,48(11):2677−2679 doi: 10.3969/j.issn.1672-9722.2020.11.027
He Xiaowei. Physical design method for high performance CPU core frequency improvement and power optimization[J]. Computer & Digital Engineering, 2020, 48(11): 2677−2679 (in Chinese) doi: 10.3969/j.issn.1672-9722.2020.11.027
|
[11] |
Koppanalil J, Yeung G, O'Driscoll D, et al. A 1.6 GHz dual-core ARM cortex A9 implementation on a low power high-K metal gate 32 nm process[C] //Proc of the IEEE Int Symp on VLSI Design, Automation and Test. Piscataway, NJ: IEEE, 2011: 239−242
|
[12] |
Chen Chen, Xiang Xiaoyan, Liu Chang, et al. Xuantie-910: A commercial multi-core 12-stage pipeline out-of-order 64-bit high performance RISC-V processor with vector extension[C] //Proc of the ACM/IEEE 47th Annual Int Symp on Computer Architecture. New York: ACM, 2020: 52−64
|
[1] | Guo Husheng, Zhang Yutong, Wang Wenjian. Elastic Gradient Ensemble for Concept Drift Adaptation[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440407 |
[2] | Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452 |
[3] | Guo Husheng, Cong Lu, Gao Shuhua, Wang Wenjian. Adaptive Classification Method for Concept Drift Based on Online Ensemble[J]. Journal of Computer Research and Development, 2023, 60(7): 1592-1602. DOI: 10.7544/issn1000-1239.202220245 |
[4] | Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693 |
[5] | Cai Huan, Lu Kezhong, Wu Qirong, Wu Dingming. Adaptive Classification Algorithm for Concept Drift Data Stream[J]. Journal of Computer Research and Development, 2022, 59(3): 633-646. DOI: 10.7544/issn1000-1239.20201017 |
[6] | Yu Xian, Li Zhenyu, Sun Sheng, Zhang Guangxing, Diao Zulong, Xie Gaogang. Adaptive Virtual Machine Consolidation Method Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2021, 58(12): 2783-2797. DOI: 10.7544/issn1000-1239.2021.20200366 |
[7] | Bai Chenjia, Liu Peng, Zhao Wei, Tang Xianglong. Active Sampling for Deep Q-Learning Based on TD-error Adaptive Correction[J]. Journal of Computer Research and Development, 2019, 56(2): 262-280. DOI: 10.7544/issn1000-1239.2019.20170812 |
[8] | Zhang Yuanpeng, Deng Zhaohong, Chung Fu-lai, Hang Wenlong, Wang Shitong. Fast Self-Adaptive Clustering Algorithm Based on Exemplar Score Strategy[J]. Journal of Computer Research and Development, 2018, 55(1): 163-178. DOI: 10.7544/issn1000-1239.2018.20160937 |
[9] | Ma Anxiang, Zhang Bin, Gao Kening, Qi Peng, and Zhang Yin. Deep Web Data Extraction Based on Result Pattern[J]. Journal of Computer Research and Development, 2009, 46(2): 280-288. |
[10] | Dandan, Li Zusong, Wang Jian, Zhang Longbing, Hu Weiwu, Liu Zhiyong. Adaptive Stack Cache with Fast Address Generation[J]. Journal of Computer Research and Development, 2007, 44(1): 169-176. |