• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation“CCIR 2024推荐”[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440770
Citation: MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation“CCIR 2024推荐”[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440770

MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation“CCIR 2024推荐”

More Information
  • Received Date: October 09, 2024
  • Available Online: April 02, 2025
  • Collaborative filtering-based recommender systems that only rely on single-behavior data often encounter serious sparsity problems in practical applications, resulting in poor performance. Multi-behavior Recommendation (MBR) is a method that seeks to learn user preferences, represented as vector embeddings, from auxiliary behavior interaction data. By leveraging these preferences for target behavior recommendations, MBR can mitigate the data sparsity challenge and enhances predictive precision for recommendations. This research introduces MB-HGCN, a novel recommendation model designed to exploit multi-behavior data. The model leverages a hierarchical graph convolutional network to learn user and item embeddings from a coarse-grained global level to a fine-grained behavior-specific level. Our model learns global embeddings from a unified homogeneous graph constructed by the interactions of all behaviors, which are then used as initialized embeddings for behavior-specific embedding learning in each behavior graph. Moreover, we also emphasize the distinct of the user and item behavior-specific embeddings and design two simple-yet-effective strategies to aggregate the behavior-specific embeddings for users and items, respectively. Finally, we adopt multi-task learning for optimization. Extensive experimental results on three real-world benchmark datasets show that our MB-HGCN model can substantially outperform the state-of-the-art methods, achieving a relative improvement of 73.93% and 74.21% for HR@10 and NDCG@10, respectively, on the Tmall datasets.
  • Related Articles

    [1]Guo Husheng, Zhang Yutong, Wang Wenjian. Elastic Gradient Ensemble for Concept Drift Adaptation[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440407
    [2]Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452
    [3]Guo Husheng, Cong Lu, Gao Shuhua, Wang Wenjian. Adaptive Classification Method for Concept Drift Based on Online Ensemble[J]. Journal of Computer Research and Development, 2023, 60(7): 1592-1602. DOI: 10.7544/issn1000-1239.202220245
    [4]Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693
    [5]Cai Huan, Lu Kezhong, Wu Qirong, Wu Dingming. Adaptive Classification Algorithm for Concept Drift Data Stream[J]. Journal of Computer Research and Development, 2022, 59(3): 633-646. DOI: 10.7544/issn1000-1239.20201017
    [6]Yu Xian, Li Zhenyu, Sun Sheng, Zhang Guangxing, Diao Zulong, Xie Gaogang. Adaptive Virtual Machine Consolidation Method Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2021, 58(12): 2783-2797. DOI: 10.7544/issn1000-1239.2021.20200366
    [7]Bai Chenjia, Liu Peng, Zhao Wei, Tang Xianglong. Active Sampling for Deep Q-Learning Based on TD-error Adaptive Correction[J]. Journal of Computer Research and Development, 2019, 56(2): 262-280. DOI: 10.7544/issn1000-1239.2019.20170812
    [8]Zhang Yuanpeng, Deng Zhaohong, Chung Fu-lai, Hang Wenlong, Wang Shitong. Fast Self-Adaptive Clustering Algorithm Based on Exemplar Score Strategy[J]. Journal of Computer Research and Development, 2018, 55(1): 163-178. DOI: 10.7544/issn1000-1239.2018.20160937
    [9]Ma Anxiang, Zhang Bin, Gao Kening, Qi Peng, and Zhang Yin. Deep Web Data Extraction Based on Result Pattern[J]. Journal of Computer Research and Development, 2009, 46(2): 280-288.
    [10]Dandan, Li Zusong, Wang Jian, Zhang Longbing, Hu Weiwu, Liu Zhiyong. Adaptive Stack Cache with Fast Address Generation[J]. Journal of Computer Research and Development, 2007, 44(1): 169-176.

Catalog

    Article views (15) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return