• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tang Liangrui, Chen Yuanyuan, and Feng Sen. A Chain Routing Algorithm Based on Evidence Theory in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(7): 1362-1369.
Citation: Tang Liangrui, Chen Yuanyuan, and Feng Sen. A Chain Routing Algorithm Based on Evidence Theory in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(7): 1362-1369.

A Chain Routing Algorithm Based on Evidence Theory in Wireless Sensor Networks

More Information
  • Published Date: July 14, 2013
  • At present, only the remaining energy of nodes is considered when electing the leader node in existing chain routing algorithms. Although EEPB adopts the remaining energy of nodes and the distance between nodes and the base station(BS) to determine which node is qualified to be the leader node, simply weighting these two factors does not completely eliminate the inconsistency of the two decisions. Accordingly, a chain routing algorithm based on evidence theory called CRET is proposed. In the leader node election stage, CRET utilizes two evaluation indexes which are the remaining energy of nodes and the distance between nodes and the BS to confirm which node is chosen as the leader of the chain by Dempster-Shafer (D-S) evidence theory. In the CRET algorithm, two membership functions are respectively established to describe two evaluation indexes, and the basic probability assignment functions of the two indexes are acquired. Then the combination discipline of D-S evidence theory is used to determine the final results of two evaluation indexes. In the chain construction stage, in order to avoid the generation of long chain, the node which has joined the chain is taken into account, and each one is connected to its nearest node. Simulation results show that CRET has superior performance over EEPB on balancing energy consumption among the nodes and extending the network lifetime.
  • Related Articles

    [1]Fan Wei, Liu Yong. Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer[J]. Journal of Computer Research and Development, 2022, 59(8): 1757-1769. DOI: 10.7544/issn1000-1239.20220064
    [2]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [3]Xu Mingda, Zhang Zike, Xu Xiaoke. Research on Spreading Mechanism of False Information in Social Networks by Motif Degree[J]. Journal of Computer Research and Development, 2021, 58(7): 1425-1435. DOI: 10.7544/issn1000-1239.2021.20200806
    [4]Li Yingying, Ma Shuai, Jiang Haoyi, Liu Zhe, Hu Chunming, Li Xiong. An Approach for Storytelling by Correlating Events from Social Networks[J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. DOI: 10.7544/issn1000-1239.2018.20180155
    [5]Liao Guoqiong, Jiang Shan, Zhou Zhiheng, Wan Changxuan. Dual Fine-Granularity POI Recommendation on Location-Based Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2600-2610. DOI: 10.7544/issn1000-1239.2017.20160502
    [6]Tan Zhenhua, Shi Yingcheng, Shi Nanxiang, Yang Guangming, Wang Xingwei. Rumor Propagation Analysis Model Inspired by Gravity Theory for Online Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2586-2599. DOI: 10.7544/issn1000-1239.2017.20160434
    [7]Wang Zhenwen, Xiao Weidong, and Tan Wentang. Classification in Networked Data Based on the Probability Generative Model[J]. Journal of Computer Research and Development, 2013, 50(12): 2642-2650.
    [8]Tan Wentang, Wang Zhenwen, Yin Fengjing, Ge Bin, and Xiao Weidong. A Partial Comparative Cross Collections LDA Model[J]. Journal of Computer Research and Development, 2013, 50(9): 1943-1953.
    [9]Guo Qiaojin, Li Ning, Yang Yubin, and Wu Gangshan. LDA-CRF: Object Detection Based on Graphical Model[J]. Journal of Computer Research and Development, 2012, 49(11): 2296-2304.
    [10]Li Zhi, Li Qianmu, Zhang Hong, Liu Fengyu. Closely Social Circuit Based Routing in Social Delay Tolerant Networks[J]. Journal of Computer Research and Development, 2012, 49(6): 1185-1195.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return