Advanced Search
    Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.
    Citation: Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.

    Density-Based Link Clustering Algorithm for Overlapping Community Detection

    More Information
    • Published Date: December 14, 2013
    • For detecting overlapping communities efficiently and effectively in various real-world social networks, we propose a novel density-based link clustering algorithm called DBLINK. The proposed algorithm firstly partitions the edge set of the network into disjoint link communities, which will be then transformed into the final node communities. The overlapping nodes will be linked with the edges that are assigned into different link communities. Furthermore, for obtaining the overlapping community structure with high quality and without excessive overlap, DBLINK utilizes the density-based algorithm as the clustering method for the edge set, which has the ability of identifying the isolated edges that are not satisfied with certain conditions and assigning them into no-link community. An empirical evaluation of the method using both synthetic and real datasets demonstrates that DBLINK not only has satisfying time efficiency, but also plays better performance than the state-of-the-art methods at the community detection quality aspect.
    • Related Articles

      [1]Xie Qin, Zhang Qinghua, Wang Guoyin. An Adaptive Three-way Spam Filter with Similarity Measure[J]. Journal of Computer Research and Development, 2019, 56(11): 2410-2423. DOI: 10.7544/issn1000-1239.2019.20180793
      [2]Song Jinfeng, Wen Lijie, Wang Jianmin. A Similarity Measure for Process Models Based on Task Occurrence Relations[J]. Journal of Computer Research and Development, 2017, 54(4): 832-843. DOI: 10.7544/issn1000-1239.2017.20151176
      [3]Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
      [4]Wang Shaopeng, Wen Yingyou, Zhao Hong. Similarity Query Processing Algorithm over Data Stream Based on LCSS[J]. Journal of Computer Research and Development, 2015, 52(9): 1976-1991. DOI: 10.7544/issn1000-1239.2015.20140479
      [5]Xiao Yu and Yu Jian. A Weighted Self Adaptive Similarity Measure[J]. Journal of Computer Research and Development, 2013, 50(9): 1876-1882.
      [6]Shen Qingni, Du Hong, Wen Han, Qing Sihan. A Data Sealing Approach Based on Integrity Measurement Architecture[J]. Journal of Computer Research and Development, 2012, 49(1): 210-216.
      [7]Zhu Yangyong, Dai Dongbo, and Xiong Yun. A Survey of the Research on Similarity Query Technique of Sequence Data[J]. Journal of Computer Research and Development, 2010, 47(2): 264-276.
      [8]Xing Chunxiao, Gao Fengrong, Zhan Sinan, Zhou Lizhu. A Collaborative Filtering Recommendation Algorithm Incorporated with User Interest Change[J]. Journal of Computer Research and Development, 2007, 44(2): 296-301.
      [9]Liu Bing, Yan Heping, Duan Jiangjiao, Wang Wei, and Shi Baile. A Bottom-Up Distance-Based Index Tree for Metric Space[J]. Journal of Computer Research and Development, 2006, 43(9): 1651-1657.
      [10]Xiu Yu, Wang Shitong, Wu Xisheng, Hu Dewen. The Directional Similarity-Based Clustering Method DSCM[J]. Journal of Computer Research and Development, 2006, 43(8): 1425-1431.

    Catalog

      Article views (1670) PDF downloads (1192) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return