• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ni Xunbo, Zhao Debin, Jiang Feng, and Cheng Dansong. Mapping Analysis Between Viterbi and DTW Algorithms—Application to the Identification of Signer Independent Sign Language[J]. Journal of Computer Research and Development, 2010, 47(2).
Citation: Ni Xunbo, Zhao Debin, Jiang Feng, and Cheng Dansong. Mapping Analysis Between Viterbi and DTW Algorithms—Application to the Identification of Signer Independent Sign Language[J]. Journal of Computer Research and Development, 2010, 47(2).

Mapping Analysis Between Viterbi and DTW Algorithms—Application to the Identification of Signer Independent Sign Language

More Information
  • Published Date: February 14, 2010
  • In classical pattern classification theory, Viterbi algorithm represents pattern matching algorithm of statistic probability. However, DTW algorithm represents pattern matching algorithm of template matching algorithm. Whether there is any relationship between them have not been presented clearly. Aiming at this problem, the authors set up relationship between Viterbi algorithm and DTW algorithm based on application of fuzzy math theory under the premise that “the category of fuzzy math membership is the general probability”. Firstly, they propose the common closeness degree expression transferring “distance” of DTW algorithm to “probability” of Viterbi algorithm making use of closeness degree in fuzzy math and prove the common closeness degree expression theoretically. Secondly, the HMM parameters are re-estimated with the common closeness degree of DTW to set up fuzzy closeness degree relationship between DTW algorithm and Viterbi algorithm, for which the δ-ε algorithm is presented to obtain parameter re-estimating form similar to HMM based on data frame. Then, in order to ensure correctness of the fuzzy closeness relationship between DTW algorithm and Viterbi algorithm, corresponding proof is given as a theorem. Thirdly, during the HMM parameter re-estimation with the decided DTW closeness degree expression, it is found that there exists fuzzy relationship between the DTW closeness degree re-estimating parameters and the HMM re-estimating parameters and it is proved as a theorem. Finally, the authors propose Dtw-ViterbiⅠ,Ⅱ,Ⅲ based on the above theorem, prove the correctness of them as a theorem and implement them in signer-independent sign language recognition. Experiment results show that introducing the path searching strategy of DTW algorithm in Viterbi algorithm in the form of probability can partly reduce the failures in signer-independent sign language recognition by reducing candidate vocabulary thus improving the signer-independent sign language recognition rate and speed in case of large vocabulary.
  • Related Articles

    [1]Xia Nu, Li Wei, Lu You, Jiang Jian, Shan Feng, Luo Junzhou. A Trust Model for the Inter-Domain Routing System[J]. Journal of Computer Research and Development, 2016, 53(4): 845-860. DOI: 10.7544/issn1000-1239.2016.20151121
    [2]Hu Jun, Zhang Zhenxing, Zou Li. Collaborative-Degree Based Distributed Automatic Negotiation Coalition Formation Mechanism[J]. Journal of Computer Research and Development, 2015, 52(5): 1080-1090. DOI: 10.7544/issn1000-1239.2015.20131544
    [3]Jiang Liming, Zhang Kun, Xu Jian, Zhang Hong. A New Evidential Trust Model Based on Graph Theory for Open Computing Systems[J]. Journal of Computer Research and Development, 2013, 50(5): 921-931.
    [4]Cai Hongyun, Tian Junfeng, Li Zhen, and He Lihui. Trust Model Based on Trust Area and Evaluation Credibility[J]. Journal of Computer Research and Development, 2011, 48(11): 2131-2138.
    [5]Tian Junfeng, Du Ruizhong, Liu Yuling. Trust Evaluation Model Based on Node Behavior Character[J]. Journal of Computer Research and Development, 2011, 48(6): 934-944.
    [6]Cheng Bailiang, Zeng Guosun, Jie Anquan. Study of Multi-Agent Trust Coalition Based on Self-Organization Evolution[J]. Journal of Computer Research and Development, 2010, 47(8): 1382-1391.
    [7]Zhao Xiang, Huang Houkuan, Dong Xingye, and He Lijian. A Trust and Reputation System Model for Open Multi-Agent System[J]. Journal of Computer Research and Development, 2009, 46(9): 1480-1487.
    [8]Tong Xiangrong, Huang Houkuan, Zhang Wei. Prediction and Abnormal Behavior Detection of Agent Dynamic Interaction Trust[J]. Journal of Computer Research and Development, 2009, 46(8): 1364-1370.
    [9]He Lijian, Huang Houkuan, Zhang Wei. A Survey of Trust and Reputation Systems in Multi Agent Systems[J]. Journal of Computer Research and Development, 2008, 45(7).
    [10]Liang Yinghong, Zhao Tiejun, Liu Bo, Yang Muyun. English Text Chunking Based on Headword Extending and the Evaluation of Relative-Degree[J]. Journal of Computer Research and Development, 2006, 43(1): 153-158.

Catalog

    Article views (964) PDF downloads (581) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return