• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Xiaowei, Xiang Ming, Zhang Dawei, and Liu Qingkun. An Adaptive Tasks Scheduling Method Based on the Ability of Node in Hadoop Cluster[J]. Journal of Computer Research and Development, 2014, 51(3): 618-626.
Citation: Zheng Xiaowei, Xiang Ming, Zhang Dawei, and Liu Qingkun. An Adaptive Tasks Scheduling Method Based on the Ability of Node in Hadoop Cluster[J]. Journal of Computer Research and Development, 2014, 51(3): 618-626.

An Adaptive Tasks Scheduling Method Based on the Ability of Node in Hadoop Cluster

More Information
  • Published Date: March 14, 2014
  • Scheduling algorithm has played an important role in improving Hadoop cluster performance. However, the phenomenon of uneven load distribution exists in current Hadoop inherent task-level scheduling methods. In order to maintain the load status of each node in the cluster, we focus on the analysis and research about the implementation capacity of cluster nodes. An adaptive tasks scheduling method based on the node capability is proposed in this paper. According to the node history and the current load status, the method takes node performance, task characteristics and node failure rate as the parameters to calculate node executive ability. On this basis, the different amount of tasks are assigned to cluster nodes. Thus, joined nodes adaptively adjust the amount of running tasks to make the node suited for different tasks better. Finally experimental results indicate that the proposed adaptive tasks scheduling method can make the total task completion time being reduced significantly, and moreover, the load on each node gets more balanced and the node resource utilization is more reasonable.
  • Related Articles

    [1]Liu Xinghong, Zhou Yi, Zhou Tao, Qin Jie. Self-Paced Learning for Open-Set Domain Adaptation[J]. Journal of Computer Research and Development, 2023, 60(8): 1711-1726. DOI: 10.7544/issn1000-1239.202330210
    [2]Dai Hao, Jin Ming, Chen Xing, Li Nan, Tu Zhiying, Wang Yang. Survey of Data-Driven Application Self-Adaptive Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2549-2568. DOI: 10.7544/issn1000-1239.20210221
    [3]Tong Yanxiang, Qin Yi, Ma Xiaoxing. Evaluating the Fitness of Model Deviation Detection Approaches on Self-Adaptive Software Systems[J]. Journal of Computer Research and Development, 2022, 59(9): 1929-1946. DOI: 10.7544/issn1000-1239.20220015
    [4]Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
    [5]Zhao Liang, Wang Yongli, Du Zhongshu, Chen Guangsheng. HL-DAQ: A Dynamic Adaptive Quantization Coding for Hash Learning[J]. Journal of Computer Research and Development, 2018, 55(6): 1294-1307. DOI: 10.7544/issn1000-1239.2018.20170238
    [6]Xia Zhuoqun, Hu Zhenzhen, Luo Junpeng, Chen Yueyue. Adaptive Trajectory Prediction for Moving Objects in Uncertain Environment[J]. Journal of Computer Research and Development, 2017, 54(11): 2434-2444. DOI: 10.7544/issn1000-1239.2017.20170309
    [7]Li Shanqing, Tang Liang, Liu Keyan, Wang Lei. A Fast and Adaptive Object Tracking Method[J]. Journal of Computer Research and Development, 2012, 49(2): 383-391.
    [8]Yang Jianhua, Xie Gaogang, and Li Zhongcheng. A Best-Effort Adaptive Sampling Method for Flow-Based Traffic Monitoring[J]. Journal of Computer Research and Development, 2006, 43(3): 402-409.
    [9]Zhang Jianyu, Wei Tao, and Zou Wei. A Packet Classification Algorithm Based on Self-Adaptive Cache[J]. Journal of Computer Research and Development, 2006, 43(2): 196-203.
    [10]Wang Jin, Li Dequan, and Feng Dengguo. An Autonomous Agent-Based Adaptive Distributed Intrusion Detection System[J]. Journal of Computer Research and Development, 2005, 42(11): 1934-1939.

Catalog

    Article views (964) PDF downloads (675) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return