• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Ronggui, Zhang Xinlong, Zhang Xuan, and Fang Shuai. Image Enhancement in the Compressed Domain Based on Retinex Theory[J]. Journal of Computer Research and Development, 2011, 48(2): 259-270.
Citation: Wang Ronggui, Zhang Xinlong, Zhang Xuan, and Fang Shuai. Image Enhancement in the Compressed Domain Based on Retinex Theory[J]. Journal of Computer Research and Development, 2011, 48(2): 259-270.

Image Enhancement in the Compressed Domain Based on Retinex Theory

More Information
  • Published Date: February 14, 2011
  • Existing image enhancement algorithms in the compressed domain can not preserve the details and color information when enhancing the contrast of images. They mostly treat the DCT coefficients uniformly using the same strategy, or can not inhibit artifacts if treating the coefficients differently. A new image enhancement algorithm in the DCT compressed domain based on Retinex theory is proposed. The algorithm divides DCT coefficients into the illumination component (DC coefficients) and the reflection component (AC coefficients) according to Retinex theory. The DC coefficients are adjusted to compress the image dynamic range by mapping the illumination component to an ideal range, using two simple but powerful functions. The AC coefficients which represent reflection component are adjusted to enhance the local details with a new definition of spectral content measure. The fact that perception of image detail information for peopleis based on the ratio of high and low frequency in human visual system leads to the new definition. The block artifacts will be suppressed using a block decomposing strategy with a threshold automatically according to the characteristics of the images to be enhanced. Compared with traditional Retinex and DCT enhancement algorithms, experiment results show the proposed algorithms efficiency in details enhancement and color preserving, also with artifacts compressed.
  • Related Articles

    [1]Wu Wenlong, Yin Hailian, Wang Ning, Xu Mengfei, Zhao Xinzhe, Yin Zhanzuo, Liu Yuanrui, Wang Haofen, Ding Yan, Li Bohan. A Synergetic LLM-KG Framework for Cross-Domain Heterogeneous Data Query[J]. Journal of Computer Research and Development, 2025, 62(3): 605-619. DOI: 10.7544/issn1000-1239.202440634
    [2]Wang Mengru, Yao Yunzhi, Xi Zekun, Zhang Jintian, Wang Peng, Xu Ziwen, Zhang Ningyu. Safety Analysis of Large Model Content Generation Based on Knowledge Editing[J]. Journal of Computer Research and Development, 2024, 61(5): 1143-1155. DOI: 10.7544/issn1000-1239.202330965
    [3]Guo Jiang, Wang Miao, Zhang Yujun. Content Type Based Jumping Probability Caching Mechanism in NDN[J]. Journal of Computer Research and Development, 2021, 58(5): 1118-1128. DOI: 10.7544/issn1000-1239.2021.20190871
    [4]Li Li, Liu Huanyu, Lu Laifeng. Probabilistic Caching Content Placement Method Based on Content-Centrality[J]. Journal of Computer Research and Development, 2020, 57(12): 2648-2661. DOI: 10.7544/issn1000-1239.2020.20190704
    [5]Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
    [6]Huang Sheng, Teng Mingnian, Wu Zhen, Xu Jianghua, Ji Ruijun. A Data Caching Scheme Based on Node Classification in Named Data Networking[J]. Journal of Computer Research and Development, 2016, 53(6): 1281-1291. DOI: 10.7544/issn1000-1239.2016.20148097
    [7]Li Ruimin, Lin Hongfei, Yan Jun. Mining Latent Semantic on User-Tag-Item for Personalized Music Recommendation[J]. Journal of Computer Research and Development, 2014, 51(10): 2270-2276. DOI: 10.7544/issn1000-1239.2014.20130342
    [8]Wang Zhurong, Li Wei, Zhu Bilei, Li Xiaoqiang. Audio Authentication Based on Music Content Analysis[J]. Journal of Computer Research and Development, 2012, 49(1): 158-166.
    [9]Huang Zhenhua and Wang Wei. An Algebra for Skyline Query Processing Data Cube[J]. Journal of Computer Research and Development, 2007, 44(6): 990-999.
    [10]Zheng Guibin, Han Jiqing. Automatic Music Transcription Based on Harmonic Structure Information[J]. Journal of Computer Research and Development, 2006, 43(12): 2187-2192.

Catalog

    Article views (957) PDF downloads (761) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return