• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
Citation: Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132

Survey of Query Processing and Mining Techniques over Large Temporal Graph Database

More Information
  • Published Date: August 31, 2018
  • A temporal graph, as a graph structure with time dimension, plays a more and more important role in query processing and mining of graph data. Different with the traditional static graph, structure of the temporal graph changes with the time series, that is to say the edge of temporal graph is activated by time. And each edge of the temporal graph has the label of recording time, which makes the temporal graph contain more information than the static graph, so the existing data query processing methods cannot be used in the temporal graph. Therefore how to solve the problem of query processing and mining on the temporal graph has attracted much attention of researchers. This paper summarizes the existing query processing and mining methods on temporal graphs. Firstly, this paper gives the application background and basic definition of temporal graph, and combs the existing three typical models which are used to model temporal graph in the existing works. Secondly, this paper introduces and analyzes the existing work on temporal graph from three aspects: graph query processing method, graph mining method and temporal graph management system. Finally, the possible research directions on temporal graph are prospected to provide reference for related research.
  • Cited by

    Periodical cited type(11)

    1. 李源,林秋兰,陈安之,杨国利,宋威,王国仁. 基于树分解的时序最短路径计数查询算法. 计算机应用. 2024(08): 2446-2454 .
    2. 张千桢,郭得科,赵翔. 面向时序图的季节突发性子图挖掘算法. 软件学报. 2024(12): 5526-5543 .
    3. 梁锐杰,程永利. 基于NUMA延迟发送的时变图弱连通分量求解. 计算机系统应用. 2023(03): 322-329 .
    4. 许成伟,邹晓红. 基于时序图的替补种子节点挖掘算法研究. 燕山大学学报. 2023(05): 433-440 .
    5. 李凤英,申会强,董荣胜. 基于k~d-MDD的时序图紧凑表示. 计算机研究与发展. 2022(06): 1286-1296 . 本站查看
    6. 邹晓红,许成伟,陈晶,宋彪,王明月. 大规模时序图中种子节点挖掘算法研究. 通信学报. 2022(09): 157-168 .
    7. 胡艳. 基于循环神经网络和卡尔曼滤波器的多变量混沌时间序列预测. 计算机应用与软件. 2021(04): 281-287+323 .
    8. 何珍文,吴冲龙,刘刚,田宜平,张夏林,陈麒玉. 地学时序大数据的相似性度量与索引方法综述. 地质科技通报. 2020(04): 44-50 .
    9. 潘敏佳,李荣华,赵宇海,王国仁. 面向时序图数据的快速环枚举算法. 软件学报. 2020(12): 3823-3835 .
    10. 周翔,蔡声镇. 基于粒度计算的大数据集频繁项挖掘方法. 计算机仿真. 2020(12): 287-290+464 .
    11. 徐超,林友勇,李少利. 物联数据建模分析框架探讨. 智能物联技术. 2019(03): 9-13 .

    Other cited types(20)

Catalog

    Article views (1893) PDF downloads (751) Cited by(31)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return