• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Su Pan, Wang Xizhao, and Li Yan. Modeling Chess Strategy by Classifier Based on Imbalance Learning and Application in Computer Chinese Chess[J]. Journal of Computer Research and Development, 2011, 48(5): 841-847.
Citation: Su Pan, Wang Xizhao, and Li Yan. Modeling Chess Strategy by Classifier Based on Imbalance Learning and Application in Computer Chinese Chess[J]. Journal of Computer Research and Development, 2011, 48(5): 841-847.

Modeling Chess Strategy by Classifier Based on Imbalance Learning and Application in Computer Chinese Chess

More Information
  • Published Date: May 14, 2011
  • Computer chess game (CCG) is an important topic in the field of artificial intelligence. This technique is widely used in some entertainment PC games and chess games on different platforms. Most CCG systems are developed based on the combination of game tree searching and evaluation functions. When using game tree searching method, the level of the computer player depends on the searching depth. However, deep game tree searching is time-consuming when the games are applied on some mobile platforms such as mobile phone and PDA. In this paper, a novel method is proposed which models Chinese chess strategy by training a classifier. When playing chess games, the trained classifier is used to predict good successor positions for computer player. The training procedure is based on imbalance learning and it uses Chinese chess game records as the training sets. Specifically, the training sets extracted from game records are imbalanced; therefore, imbalance learning methods are employed to modify the original training sets. Compared with the classical CCG system, this new method is as fast as 1-level game tree search when playing games, and it contains an offline learning process. Experimental results demonstrate that the proposed method is able to model Chinese chess strategies and the imbalance learning plays an important role in the modeling process.
  • Related Articles

    [1]Lin Jingjing, Ye Zhonglin, Zhao Haixing, Li Zhuoran. Survey on Hypergraph Neural Networks[J]. Journal of Computer Research and Development, 2024, 61(2): 362-384. DOI: 10.7544/issn1000-1239.202220483
    [2]Li Han, Yan Mingyu, Lü Zhengyang, Li Wenming, Ye Xiaochun, Fan Dongrui, Tang Zhimin. Survey on Graph Neural Network Acceleration Architectures[J]. Journal of Computer Research and Development, 2021, 58(6): 1204-1229. DOI: 10.7544/issn1000-1239.2021.20210166
    [3]Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111
    [4]Wang Yilei, Zhuo Yifan, Wu Yingjie, Chen Mingqin. Question Answering Algorithm on Image Fragmentation Information Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2018, 55(12): 2600-2610. DOI: 10.7544/issn1000-1239.2018.20180606
    [5]Huang Liang, Feng Dengguo, Lian Yifeng, Chen Kai. Artificial-Neural-Network-Based DDoS Defense Effectiveness Evaluation[J]. Journal of Computer Research and Development, 2013, 50(10): 2100-2108.
    [6]He Jialang, Zhang Hong. Application of Artificial Neural Network in Software Multi-Faults Location[J]. Journal of Computer Research and Development, 2013, 50(3): 619-625.
    [7]Yang Bo, Wang Yadong, Su Xiaohong, and Tang Xianglong. Neural Networks' Distributed Cooperative Learning Strategy Based on Agent and Chips[J]. Journal of Computer Research and Development, 2006, 43(12): 2096-2103.
    [8]Su Xiaohong, Zhang Mingjie, Ma Peijun, and Wang Yadong. Research on Solving the Problem of CMAC Neural Network Collision[J]. Journal of Computer Research and Development, 2006, 43(5): 862-866.
    [9]Li Aijun, Luo Siwei, Huang Hua, Liu Yunhui. Decision Tree Based Neural Network Design[J]. Journal of Computer Research and Development, 2005, 42(8): 1312-1317.
    [10]Huang Hua, Luo Siwei, Liu Yunhui, and Li Aijun. Knowledge Increase Ability of Artificial Neural Network[J]. Journal of Computer Research and Development, 2005, 42(2): 224-229.

Catalog

    Article views (787) PDF downloads (524) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return