• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Zhendong and Li Shanping. A Topology Control Algorithm Based on Link Reliability and Multi-Path for Sensor Networks[J]. Journal of Computer Research and Development, 2007, 44(2): 216-222.
Citation: Wu Zhendong and Li Shanping. A Topology Control Algorithm Based on Link Reliability and Multi-Path for Sensor Networks[J]. Journal of Computer Research and Development, 2007, 44(2): 216-222.

A Topology Control Algorithm Based on Link Reliability and Multi-Path for Sensor Networks

More Information
  • Published Date: February 14, 2007
  • Energy efficiency and load balance are two important design issues for wireless sensor networks(WSN). It is found that topology control can improve the network's energy efficiency significantly. However, the existing topology control methods usually don't consider the factors of the link reliability and multi-path which affect the network's energy efficiency and load balance. In this paper, based on an analytical link loss model, the relationship of energy efficiency, load balance and the number of neighbors is analyzed. It is found that there is a contradiction between improving energy efficiency and load balance at the same time. A layered topology control algorithm LELB (layered energy-efficient and load balance algorithm) is proposed, which adjusts network's topology for increasing energy efficiency meanwhile getting good load balance over unreliable links. Simulation shows that this algorithm can significantly improve the network's performance.
  • Related Articles

    [1]Ma Zhaojia, Shao En, Di Zhanyuan, Ma Lixian. Porting and Parallel Optimization of Common Operators Based on Heterogeneous Programming Models[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330869
    [2]Zhou Ze, Sun Yinghui, Sun Quansen, Shen Xiaobo, Zheng Yuhui. An Adversarial Detection Method Based on Tracking Performance Difference of Frequency Bands[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440428
    [3]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [4]Xie Zhen, Tan Guangming, Sun Ninghui. Research on Optimal Performance of Sparse Matrix-Vector Multiplication and Convoulution Using the Probability-Process-Ram Model[J]. Journal of Computer Research and Development, 2021, 58(3): 445-457. DOI: 10.7544/issn1000-1239.2021.20180601
    [5]Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
    [6]Gu Rong, Yan Jinshuang, Yang Xiaoliang, Yuan Chunfeng, and Huang Yihua. Performance Optimization for Short Job Execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014, 51(6): 1270-1280.
    [7]Zhang Fengjun, Zhao Ling, An Guocheng, Wang Hongan, Dai Guozhong. Mean Shift Tracking Algorithm with Scale Adaptation[J]. Journal of Computer Research and Development, 2014, 51(1): 215-224.
    [8]Lü Na and Feng Zuren. Adaptive Multi-Resolutional Image Tracking Algorithm[J]. Journal of Computer Research and Development, 2012, 49(8): 1708-1714.
    [9]Li Shanqing, Tang Liang, Liu Keyan, Wang Lei. A Fast and Adaptive Object Tracking Method[J]. Journal of Computer Research and Development, 2012, 49(2): 383-391.
    [10]Zheng Ruijuan, Wu Qingtao, Zhang Mingchuan, Li Guanfeng, Pu Jiexin, Wang Huiqiang. A Self-Optimization Mechanism of System Service Performance Based on Autonomic Computing[J]. Journal of Computer Research and Development, 2011, 48(9): 1676-1684.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return