• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Yunfang, Wang Miao, Jin Peng, Yu Shiwen. Ensembles of Classifiers for Chinese Word Sense Disambiguation[J]. Journal of Computer Research and Development, 2008, 45(8): 1354-1361.
Citation: Wu Yunfang, Wang Miao, Jin Peng, Yu Shiwen. Ensembles of Classifiers for Chinese Word Sense Disambiguation[J]. Journal of Computer Research and Development, 2008, 45(8): 1354-1361.

Ensembles of Classifiers for Chinese Word Sense Disambiguation

More Information
  • Published Date: August 14, 2008
  • Word sense disambiguation has long been a central concern for natural language processing, and ensemble of classifiers is one of the four current directions in machine learning study. This paper makes a systematic study on the ensembles of classifiers for Chinese word sense disambiguation. Nine kinds of combining strategies are experimented in this paper: product, average, max, min, majority voting, rank-based voting, weighted voting, weighted probability, and best single combining, among which the three combining methods of product, average and max have not been applied in word sense disambiguation in previous works. Support vector machine, nave Bayes, and decision tree are selected as the three component classifiers. Four kinds of features are used in all of the three classifiers: bag of words, words with position, parts of speech with position and 2-gram collocations. Experiments are conducted in two different datasets: the first dataset is 18 ambiguous words selected from Chinese semantic corpus, and the second dataset is the multilingual Chinese-English lexical sample task at SemEval-2007. The experimental results illustrate that the three kinds of combining strategies of average, product and max, which are applied for the first time in Chinese word sense disambiguation in this paper, exceed the accuracy of best single classifier support vector machine, and also outperform the other six kinds of combining methods.
  • Related Articles

    [1]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [2]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [3]Liu Qian, Wu Dayong, Liu Yue, Cheng Xueqi, Pang Lin. Extracting Attribute Values for Named Entities Based on Global Feature[J]. Journal of Computer Research and Development, 2016, 53(4): 941-948. DOI: 10.7544/issn1000-1239.2016.20140806
    [4]Zhang Hu, Tan Hongye, Qian Yuhua, Li Ru, Chen Qian. Chinese Text Deception Detection Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2015, 52(5): 1005-1013. DOI: 10.7544/issn1000-1239.2015.20131552
    [5]Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138
    [6]Zhang Libiao, Zhou Chunguang, Ma Ming, and Sun Caitang. A Multi-Objective Differential Evolution Algorithm Based on Max-Min Distance Density[J]. Journal of Computer Research and Development, 2007, 44(1): 177-184.
    [7]Jiang Yuan and Zhou Zhihua. A Text Classification Method Based on Term Frequency Classifier Ensemble[J]. Journal of Computer Research and Development, 2006, 43(10): 1681-1687.
    [8]Quan Changqin, He Tingting, Ji Donghong, Yu Shaowen. Word Sense Disambiguation Based on Multi-Classifier Decision[J]. Journal of Computer Research and Development, 2006, 43(5): 933-939.
    [9]Ru Liyun, Ma Shaoping, and Lu Jing. Feature Fusion Based on the Average Precision in Image Retrieval[J]. Journal of Computer Research and Development, 2005, 42(9): 1640-1646.
    [10]Qin Liangxi, Shi Zhongzhi. SFP-Max—A Sorted FP-Tree Based Algorithm for Maximal Frequent Patterns Mining[J]. Journal of Computer Research and Development, 2005, 42(2): 217-223.

Catalog

    Article views (833) PDF downloads (639) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return