• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Quan, Yan Qicui, Fu Yuchen, Hu Daojing, and Gong Shengrong. A Hierarchical Reinforcement Learning Method Based on Heuristic Reward Function[J]. Journal of Computer Research and Development, 2011, 48(12): 2352-2358.
Citation: Liu Quan, Yan Qicui, Fu Yuchen, Hu Daojing, and Gong Shengrong. A Hierarchical Reinforcement Learning Method Based on Heuristic Reward Function[J]. Journal of Computer Research and Development, 2011, 48(12): 2352-2358.

A Hierarchical Reinforcement Learning Method Based on Heuristic Reward Function

More Information
  • Published Date: December 14, 2011
  • Reinforcement learning is about controlling an autonomous agent in an unknown enviroment—often called the state space. The agent has no prior knowledge about the environment and can only obtain some knowledge by acting in the environment. Reinforcement learning, and Q-learning particularly, encounters a major problem. Learning the Q-function in tablular form may be infeasible because the amount of memory needed to store the table is excessive, and the Q-function converges only after each state being visited a lot of times. So “curse of dimensionality” is inevitably produced by large state spaces. A hierarchical reinforcement learning method based on heuristic reward function is proposed to solve the problem of “curse of dimensionality”, which make the states space grow exponentially by the number of features and slow down the convergence speed. The method can reduce state spaces greatly and quicken the speed of the study. Actions are chosen with favorable purpose and efficiency so as to optimize the reward function and quicken the convergence speed. The Tetris game is applied in the method. Analysis of algorithms and the experiment result show that the method can partly solve the “curse of dimensionality” and quicken the convergence speed prominently.
  • Related Articles

    [1]Zhao Xiaolei, Chen Zhaoyun, Shi Yang, Wen Mei, Zhang Chunyuan. Kernel Code Automatic Generation Framework on FT-Matrix[J]. Journal of Computer Research and Development, 2023, 60(6): 1232-1245. DOI: 10.7544/issn1000-1239.202330058
    [2]Liu Biao, Zhang Fangjiao, Wang Wenxin, Xie Kang, Zhang Jianyi. A Byzantine-Robust Federated Learning Algorithm Based on Matrix Mapping[J]. Journal of Computer Research and Development, 2021, 58(11): 2416-2429. DOI: 10.7544/issn1000-1239.2021.20210633
    [3]Zhou Yu, He Jianjun, Gu Hong. Fast Kernel-Based Partial Label Learning Algorithm Based on Variational Gaussian Process Model[J]. Journal of Computer Research and Development, 2017, 54(1): 63-70. DOI: 10.7544/issn1000-1239.2017.20150796
    [4]Yang Shuaifeng, Zhao Ruizhen. Image Super-Resolution Reconstruction Based on Low-Rank Matrix and Dictionary Learning[J]. Journal of Computer Research and Development, 2016, 53(4): 884-891. DOI: 10.7544/issn1000-1239.2016.20140726
    [5]Tian Meng, Wang Wenjian. Generalized Kernel Polarization Criterion for Optimizing Gaussian Kernel[J]. Journal of Computer Research and Development, 2015, 52(8): 1722-1734. DOI: 10.7544/issn1000-1239.2015.20150110
    [6]Chen Dayao, Chen Xiuhong, and Dong Changjian. Face Recognition Based on Null-Space Kernel Discriminant Analysis[J]. Journal of Computer Research and Development, 2013, 50(9): 1924-1932.
    [7]Xue Yu, Zhuang Yi, Meng Xin, Zhang Youyi. Self-Adaptive Learning Based Ensemble Algorithm for Solving Matrix Eigenvalues[J]. Journal of Computer Research and Development, 2013, 50(7): 1435-1443.
    [8]Hu Wenjun, Wang Shitong, Tao Jianwen. Maximum Vector-Angular Margin Kernel Classification[J]. Journal of Computer Research and Development, 2012, 49(4): 770-776.
    [9]Ding Lizhong and Liao Shizhong. KMA-α:A Kernel Matrix Approximation Algorithm for Support Vector Machines[J]. Journal of Computer Research and Development, 2012, 49(4): 746-753.
    [10]Liu Kebin, Li Fang, Liu Lei, and Han Ying. Implementation of a Kernel-Based Chinese Relation Extraction System[J]. Journal of Computer Research and Development, 2007, 44(8): 1406-1411.

Catalog

    Article views (897) PDF downloads (700) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return